Cho OM là một bán kính của đường tròn (O). Vẽ đường tròn (O’) có đường kính OM. Một bán kính OA của đường tròn (O) cắt đường tròn (O’) tại điểm B. Chứng minh cung nhỏ của (O) và cung nhỏ của (O’) có độ dài bằng nhau.
Đặt \(\widehat {AOM} = \alpha \), tính số đo \(\widehat {BO’M}\).
Sử dụng công thức tính độ dài cung n0 của đường tròn có bán kính R là \(l = \dfrac{{\pi Rn}}{{180}}\).
Advertisements (Quảng cáo)
Đặt \(\widehat {AOM} = \alpha \).
Xét tam giác OO’B có: \(O’O = O’B \Rightarrow \Delta OO’B\)cân tại O’ \( \Rightarrow \widehat {O’OB} = \widehat {O’BO} = \alpha \)
\( \Rightarrow \widehat {BO’M} = \widehat {O’OB} + \widehat {O’BO} = 2\alpha \) (góc ngoài bằng tổng 2 góc trong không kề với nó).
Xét đường tròn \(\left( O \right)\) ta có \({l_{MA}} = \dfrac{{\pi OM\alpha }}{{180}}\).
Xét đường tròn \(\left( {O’} \right)\) có \({l_{MB}} = \dfrac{{\pi O’O.2\alpha }}{{180}} = \dfrac{{\pi \left( {2O’O} \right)\alpha }}{{180}} = \dfrac{{\pi OM\alpha }}{{180}}\)
Vậy \({l_{MA}} = {l_{MB}}\).