Trang chủ Lớp 9 Vở thực hành Toán 9 (Kết nối tri thức) Bài 3 trang 13 vở thực hành Toán 9 tập 2: Không...

Bài 3 trang 13 vở thực hành Toán 9 tập 2: Không cần giải phương trình, hãy xác định các hệ số a, b, c...

Xét phương trình bậc hai một ẩn \(a{x^2} + bx + c = 0\left( {a \ne 0} \right)\). Giải và trình bày phương pháp giải Giải bài 3 trang 13 vở thực hành Toán 9 tập 2 - Bài 19. Phương trình bậc hai một ẩn . Không cần giải phương trình, hãy xác định các hệ số a, b, c,

Câu hỏi/bài tập:

Question - Câu hỏi/Đề bài

Không cần giải phương trình, hãy xác định các hệ số a, b, c, tính biệt thức \(\Delta \) và xác định số nghiệm của mỗi phương trình sau:

a) \(11{x^2} + 13x - 1 = 0\);

b) \(9{x^2} + 42x + 49 = 0\);

c) \({x^2} - 2x + 3 = 0\).

Method - Phương pháp giải/Hướng dẫn/Gợi ý

Xét phương trình bậc hai một ẩn \(a{x^2} + bx + c = 0\left( {a \ne 0} \right)\). Tính biệt thức \(\Delta = {b^2} - 4ac\)

+ Nếu \(\Delta > 0\) thì phương trình có hai nghiệm phân biệt: \({x_1} = \frac{{ - b + \sqrt \Delta }}{{2a}};{x_2} = \frac{{ - b - \sqrt \Delta }}{{2a}}\).

Advertisements (Quảng cáo)

+ Nếu \(\Delta = 0\) thì phương trình có nghiệm kép: \({x_1} = {x_2} = \frac{{ - b}}{{2a}}\).

+ Nếu \(\Delta < 0\) thì phương trình vô nghiệm.

Answer - Lời giải/Đáp án

a) Ta có: \(a = 11;b = 13;c = - 1\) và \(\Delta = {13^2} - 4.11.\left( { - 1} \right) = 213 > 0\).

Do đó, phương trình có hai nghiệm phân biệt.

b) Ta có: \(a = 9;b = 42;c = 49\) và \(\Delta = {42^2} - 4.49.9 = 0\).

Do đó, phương trình có nghiệm kép.

c) Ta có: \(a = 1;b = - 2;c = 3\) và \(\Delta = {\left( { - 2} \right)^2} - 4.3.1 = - 8 < 0\).

Do đó, phương trình vô nghiệm.

Advertisements (Quảng cáo)