Câu hỏi/bài tập:
Tìm hai số u và v, biết:
a) \(u + v = 20,uv = 99\);
b) \(u + v = 2,uv = 15\).
+ Hai số cần tìm là hai nghiệm của phương trình \({x^2} - Sx + P = 0\) (điều kiện \({S^2} - 4P \ge 0\)).
+ Tính nghiệm của phương trình dựa vào công thức nghiệm (hoặc công thức nghiệm thu gọn).
Advertisements (Quảng cáo)
a) Hai số cần tìm là hai nghiệm của phương trình \({x^2} - 20x + 99 = 0\)
Ta có: \(\Delta = {\left( { - 20} \right)^2} - 4.1.99 = 4 > 0,\sqrt \Delta = 2\)
Suy ra phương trình có hai nghiệm: \({x_1} = \frac{{20 + 2}}{2} = 11;{x_2} = \frac{{20 - 2}}{2} = 9\).
Vậy \(\left( {u;v} \right) = \left( {11;9} \right)\) hoặc \(\left( {u;v} \right) = \left( {9;11} \right)\).
b) Hai số cần tìm là hai nghiệm của phương trình \({x^2} - 2x + 15 = 0\).
Ta có: \(\Delta = {\left( { - 2} \right)^2} - 4.1.15 = - 56 < 0\)
Suy ra phương trình đã cho vô nghiệm.
Vậy không tồn tại hai số u, v thỏa mãn điều kiện đã cho.