Chọn phương án đúng trong mỗi câu sau:
Câu 1
Cho tam giác PQR như Hình 4.12. Khi đó ta có:
A. \(PQ = PR.\sin P\).
B. \(PQ = PR.\cos R\).
C. \(QR = PR.\cos P\).
D. \(QR = PR.\cos R\).
Trong tam giác vuông, mỗi cạnh góc vuông bằng cạnh huyền nhân với sin góc đối hoặc nhân với côsin góc kề.
Vì tam giác PQR vuông tại Q nên \(PQ = PR.\cos P = PR.\sin R\), \(QR = PR.\cos R\)
Chọn D
Câu 2
Cho tam giác PQR như Hình 4.12. Khi đó
A. \(PQ = QR.\tan P\).
B. \(PQ = QR.\cot R\).
C. \(QR = PQ.\tan P\).
D. \(QR = PQ.\cot P\).
Trong tam giác vuông, mỗi cạnh góc vuông bằng cạnh góc vuông kia nhân với tan góc đối hoặc nhân với côtang góc kề.
Vì tam giác PQR vuông tại Q nên \(PQ = QR.\tan R = QR.\cot P\), \(QR = PQ.\tan P = PQ.\cot R\)
Chọn C
Câu 3
Cho tam giác vuông MNP như Hình 4.13. Khi đó
Advertisements (Quảng cáo)
A. \(MN = \frac{5}{2}\).
B. \(MN = \frac{{5\sqrt 3 }}{3}\).
C. \(MN = 5\sqrt 3 \).
D. \(MN = \frac{{5\sqrt 3 }}{2}\).
Trong tam giác vuông, mỗi cạnh góc vuông bằng cạnh huyền nhân với sin góc đối hoặc nhân với côsin góc kề.
Vì tam giác MNP vuông tại N nên
\(MN = PM.\cos M = 5.\cos {30^o} = \frac{{5\sqrt 3 }}{2}\)
Chọn D
Câu 4
Cho tam giác vuông MNP như Hình 4.14. Tìm khẳng định sai trong các khẳng định sau?
A. \(NP = 8,5\).
B. \(MN = \frac{{17\sqrt 3 }}{2}\).
C. \(NP = MN.\tan {60^o}\).
D. \(NP = MN.\cot {60^o}\).
Trong tam giác vuông, mỗi cạnh góc vuông bằng cạnh góc vuông kia nhân với tan góc đối hoặc nhân với côtang góc kề.
Trong tam giác vuông, mỗi cạnh góc vuông bằng cạnh huyền nhân với sin góc đối hoặc nhân với côsin góc kề.
Vì tam giác MNP vuông tại N nên:
+ \(NP = PM.\cos P = 17.\cos {60^o} = 8,5\)
+ \(MN = PM.\sin P = 17.\sin {60^o} = \frac{{17\sqrt 3 }}{2}\)
+ \(NP = MN.\tan M = MN.\tan \left( {{{90}^o} - {{60}^o}} \right) \) \(= MN.\tan {30^o};\)
\(NP = MN.\cot P = MN.\cot {60^o}\)
Chọn C