Trang chủ Lớp 10 SBT Toán 10 Nâng cao Bài 42 trang 12 SBT Hình học 10 Nâng cao: Bài 4....

Bài 42 trang 12 SBT Hình học 10 Nâng cao: Bài 4. Tích của một vec tơ với một số....

Bài 42 trang 12 SBT Hình học 10 Nâng cao. Bởi vậy nếu chọn \(I\) là trọng tâm của hệ điểm \(A, B, C, D, E,\) tức là trọng tâm của hệ năm điểm đã cho. Bài 4. Tích của một vec tơ với một số.

Cho năm điểm trong đó không có ba điểm nào thẳng hàng. Gọi \(\Delta \) là một tam giác có ba đỉnh lấy trong năm điểm đó, hai điểm còn lại xác định một đoạn thẳng \(\theta \). Chứng minh rằng với các cánh chọn \(\Delta \) khác nhau, đường thẳng đi qua trọng tâm tam giác \(\Delta \) và trung điểm đoạn thẳng \(\theta \) luôn đi qua một điểm cố định.

Quảng cáo
Đang tải...

Gọi \(A, B, C\) là ba đỉnh của tam giác \(\Delta \) và \(DE\) là đoạn thẳng \(\theta \). Gọi \(G\) là trọng tâm tam giác \(\Delta \) và \(M\) là trung điểm của \(DE\)  thì với điểm \(I\) tùy ý, ta có

\(\overrightarrow {IA}  + \overrightarrow {IB}  + \overrightarrow {IC}  + \overrightarrow {ID}  + \overrightarrow {IE}  = 3\overrightarrow {IG}  + 2\overrightarrow {IM} .\)

Bởi vậy nếu chọn \(I\) là trọng tâm của hệ điểm \(A, B, C, D, E,\) tức là trọng tâm của hệ năm điểm đã cho thì \(I\) là điểm cố định và \(3\overrightarrow {IG}  + 2\overrightarrow {IM}  = \overrightarrow 0 \). Vậy các đường thẳng \(GM\) luôn luôn đi qua điểm \(I\) cố định (và \(I\) là điểm chia đoạn thẳng \(GM\) theo tỉ số \( – {2 \over 3}\)).