Trang chủ Lớp 10 SBT Toán 10 Nâng cao (sách cũ) Bài 46 trang 13 SBT Hình học 10 Nâng cao

Bài 46 trang 13 SBT Hình học 10 Nâng cao...

Bài 46 trang 13 SBT Hình học 10 Nâng cao. Do  \(a + b \ne c + d\) nên \(\overline {OM}  = \dfrac{{cd - ab}}{{d + c - a - b}}.\). Bài 5. Trục tọa độ và hệ trục tọa độ

Cho \(a, b, c, d\) theo thứ tự là tọa độ của các điểm \(A, B, C, D\) trên trục \(Ox\).

a) Chứng minh rằng khi \(a + b \ne c + d\) thì luôn tìm được điểm \(M\) sao cho

\(\overline {MA} .\overline {MB}  = \overline {MC} .\overline {MD} \).

b) Khi \(AB\) và \(CD\) có cùng trung điểm thì điểm \(M\) ở câu a) có xác định không?

Áp dụng. Xác định tọa độ điểm M nếu biết:

\(a=-2 ;  b=5 ;\) \( c=3,  d=-1.\)

a) Ta có

\(\begin{array}{l}\overline {MA} .\overline {MB}  = \overline {MC} .\overline {MD} \\ \Leftrightarrow (\overline {OA}  - \overline {OM} )(\overline {OB}  - \overline {OM} )\\ = (\overline {OC}  - \overline {OM} )(\overline {OD}  - \overline {OM} )\\ \Leftrightarrow \overline {OM} (\overline {OD}  + \overline {OC}  - \overline {OA}  - \overline {OB} )\\ = \overline {OC} .\overline {OD}  - \overline {OA} .\overline {OB} \\ \Leftrightarrow \,\,\overline {OM} .(d + c - a - b) \\= cd - ab\,\,\,\,\,\,\,(*)\end{array}\)

Do  \(a + b \ne c + d\) nên \(\overline {OM}  = \dfrac{{cd - ab}}{{d + c - a - b}}.\)

Advertisements (Quảng cáo)

b) Giả sử \(AB\) và \(CD\) có cùng trung điểm \(I\). Khi đó

\(\dfrac{{\overline {OA}  + \overline {OB} }}{2} = \dfrac{{\overline {OC}  + \overline {OD} }}{2}( = \overline {OI} ),\)

Hay \(a+b=c+d\). Khi đó, \(ab \ne cd\) (vì nếu \(ab=cd\) và \(a+b=c+d\) thì dễ dàng suy ra bốn điểm \(A, B, C, D\) không phân biệt). Vậy từ (*) ta suy ra điểm \(M\) không xác định.

Áp dụng:

Vói \(a=-2, b=5, c=3, d=-1\), ta thấy \(a + b \ne c + d\) . Theo câu a), điểm \(M\) được xác định và ta có

\(\overline {OM}  = \dfrac{{cd - ab}}{{d + c - a - b}}\)

\(= \dfrac{{3.( - 1) - ( - 2).5}}{{ - 1 + 3 + 2 - 5}} =  - 7.\)

Suy ra điểm \(M\) có tọa độ là \(-7.\)

Bạn đang xem bài tập, chương trình học môn SBT Toán 10 Nâng cao (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)