Trang chủ Lớp 10 SBT Toán 10 Nâng cao (sách cũ) Bài 88 trang 51 SBT Hình 10 nâng cao: (h.75).

Bài 88 trang 51 SBT Hình 10 nâng cao: (h.75)....

Bài 88 trang 51 SBT Hình học 10 Nâng cao. Mặt khác, \(\dfrac{1}{2}AB.AD.\sin \varphi  = {S_{ABD}}\) .. Bài tập Ôn tập chương II - Tích vô hướng của hai vectơ và ứng dụng

Cho điểm \(D\) nằm trong tam giác \(ABC\) sao cho \(\widehat {DAB} = \widehat {DBC} = \widehat {DCA} = \varphi .\) Chứng minh rằng:

a) \({\sin ^3}\varphi  = \sin (A - \varphi )\)\(.\sin (B - \varphi ).\sin (C - \varphi ).\)

b) \(\cot \varphi  = \cot A + \cot B + \cot C.\)

Giải

(h.75).

 

a) Theo định lí sin, trong tam giác \(ABD\) ta có

\(\dfrac{{DB}}{{\sin \varphi }} = \dfrac{{AD}}{{\sin (B - \varphi )}}\) ,     (1)

trong tam giác BCD có

\(\dfrac{{CD}}{{\sin \varphi }} = \dfrac{{BD}}{{\sin (C - \varphi )}}\),      (2)

trong tam giác \(ACD\) có

\(\dfrac{{AD}}{{\sin \varphi }} = \dfrac{{CD}}{{\sin (A - \varphi )}}\).

Từ đó ta có

Advertisements (Quảng cáo)

\(\dfrac{{AD.BD.CD}}{{{{\sin }^3}\varphi }}\)

\(= \dfrac{{AD.BD.CD}}{{\sin (A - \varphi )\sin (B - \varphi )\sin (C - \varphi )}}\).

Suy ra đẳng thức cần chứng minh.

b) Áp dụng định lí cosin vào tam giác \(DAB\) ta có

\(B{D^2}\)\( = A{B^2} + A{D^2} - 2.AB.AD.\cos \varphi. \)

Mặt khác, \(\dfrac{1}{2}AB.AD.\sin \varphi  = {S_{ABD}}\) .

Từ đó suy ra \(B{D^2} = A{B^2} + A{D^2} - 4{S_{ABD}}.\cot \varphi \).

Tương tự ta cũng có \(C{D^2} = B{C^2} + B{D^2} - 4{S_{DBC}}.\cot \varphi  ;\) \(  A{D^2} = A{C^2} + C{D^2} - 4{S_{DCA}}.\cot \varphi. \)

Cộng theo vế rồi biến đổi, chú ý rằng tổng diện tích ba tam giác nhỏ bằng diện tích \(S\) của tam giác \(ABC\), ta được

\(\cot \varphi  = \dfrac{{{a^2} + {b^2} + {c^2}}}{{4S}}\) \( = \dfrac{{{a^2} + {b^2} + {c^2}}}{{abc}}R.\)

Theo bài 58 chương II, \(\cot A + \cot B + \cot C\) \( = \dfrac{{{a^2} + {b^2} + {c^2}}}{{abc}}R.\)

Từ đó suy ra đẳng thức cần chứng minh.

Bạn đang xem bài tập, chương trình học môn SBT Toán 10 Nâng cao (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)