Trang chủ Lớp 10 SBT Toán 10 Nâng cao (sách cũ) Bài 97 trang 121 Sách bài tập Toán Nâng cao Hình 10:...

Bài 97 trang 121 Sách bài tập Toán Nâng cao Hình 10: (h.126)....

Bài 97 trang 121 SBT Hình học 10 Nâng cao. Một đường thẳng đi qua tiêu điểm \(F(c ; 0)\) của elip \((E):  \dfrac{{{x^2}}}{{{a^2}}} +  \dfrac{{{y^2}}}{{{b^2}}} = 1\)  \((a>b>0)\) và cắt nó tại hai điểm \(A, Bài 8. Ba đường cônic.

Một đường thẳng đi qua tiêu điểm \(F(c ; 0)\) của elip \((E):  \dfrac{{{x^2}}}{{{a^2}}} +  \dfrac{{{y^2}}}{{{b^2}}} = 1\)  \((a>b>0)\) và cắt nó tại hai điểm \(A, B\). Chứng minh rằng đường tròn đường kính \(AB\) không có điểm chung với đường chuẩn :\(x =  \dfrac{a}{e}\).

(h.126).

 

Gọi \(I\) là trung điểm của \(AB; A’, B’, I’\) lần lượt là hình chiếu của \(A, B, I\) trên đường chuẩn \({d_2}:  x =  \dfrac{{{a^2}}}{c}\).

Ta sẽ chứng minh:

Advertisements (Quảng cáo)

\(II’ >  \dfrac{{AB}}{2}   \Leftrightarrow   AA’ + BB’ > AB\).

Ta có

\(AB = AF + BF = e.AA’ + e.BB’ \)

\(= e(AA’ + BB’) < AA’ + BB’ = 2II’\) (do \(e<1\)). Suy ra điều cần chứng minh.

Bạn đang xem bài tập, chương trình học môn SBT Toán 10 Nâng cao (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)