Trang chủ Lớp 10 SBT Toán 10 Nâng cao (sách cũ) Câu 23 trang 241 Sách BT Đại số 10 Nâng cao:

Câu 23 trang 241 Sách BT Đại số 10 Nâng cao:...

Câu 23 trang 241 SBT Đại số 10 Nâng cao. Giải các bất phương trình:. BÀI TẬP ÔN TẬP CUỐI NĂM - ĐẠI SỐ 10 NÂNG CAO

Giải các bất phương trình:

a) \(\dfrac{{1 - x}}{{\left( {2x - 1} \right)\left( {x - 2} \right)}} < 0\) ;

b) \(\dfrac{{x + 1}}{{2x + 1}} \ge \dfrac{{x - 1}}{{3x + 1}}\) .

a) Tập nghiệm \(S = \left( {\dfrac{1}{2};1} \right) \cup \left( {2; + \infty } \right).\)

b)

Advertisements (Quảng cáo)

 \(\begin{array}{l}\dfrac{{x + 1}}{{2x + 1}} \ge \dfrac{{x - 1}}{{3x + 1}}\\ \Leftrightarrow \dfrac{{\left( {x + 1} \right)\left( {3x + 1} \right) - \left( {x - 1} \right)\left( {2x + 1} \right)}}{{\left( {2x + 1} \right)\left( {3x + 1} \right)}} \ge 0\\ \Leftrightarrow \dfrac{{{x^2} + 5x + 2}}{{\left( {2x + 1} \right)\left( {3x + 1} \right)}} \ge 0\\ \Leftrightarrow \dfrac{{\left( {x - {x_1}} \right)\left( {x - {x_2}} \right)}}{{\left( {2x + 1} \right)\left( {3x + 1} \right)}} \ge 0.\end{array}\)

với \({x_1} = \dfrac{{ - 5 - \sqrt {17} }}{2}\) và \({x_2} = \dfrac{{ - 5 + \sqrt {17} }}{2}\). Ta lập bảng sau:

Vậy tập nghiệm của bất phương trình là

\(S = \left( { - \infty ,\dfrac{{ - 5 - \sqrt {17} }}{2}} \right) \cup \left( { - \dfrac{1}{2};\dfrac{{ - 5 + \sqrt {17} }}{2}} \right)\) \( \cup \left( { - \dfrac{1}{3}; + \infty } \right)\).

Bạn đang xem bài tập, chương trình học môn SBT Toán 10 Nâng cao (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)