Trang chủ Lớp 10 SBT Toán 10 Nâng cao (sách cũ) Câu 4.53 trang 111 Sách BT Đại số 10 Nâng cao: Xét...

Câu 4.53 trang 111 Sách BT Đại số 10 Nâng cao: Xét dấu của các tam thức bậc hai :...

Câu 4.53 trang 111 SBT Đại số 10 Nâng cao. f. Tam thức có \(a = 1\) và \(a + b + c = 0\), nên tam thức có hai nghiệm. Bài 6. Dấu của tam thức bậc hai

Xét dấu của các tam thức bậc hai :

a. \(2{{ {x}}^2} + 2{ {x}} + 5\)

b. \( - {x^2} + 5{ {x}} - 6\)

c. \(2{{{x}}^2} + 2{ {x}}\sqrt 2  + 1\)

d. \( - 4{{ {x}}^2} - 4{ {x}} + 1\)

e. \(\sqrt 3 {x^2} + \left( {\sqrt 3  + 1} \right)x + 1\)

f. \({x^2} + \left( {\sqrt 5  - 1} \right)x - \sqrt 5 \)

g. \( - 0,3{{ {x}}^2} + { {x}} - 1,5\)

h. \({x^2} - \left( {\sqrt 7  - 1} \right)x + \sqrt 3 \).

:

a. Tam thức đã cho có \(a = 2 > 0\) và biệt thức \(∆’ = 1 – 10 = -9 < 0,\) nên tam thức luôn dương.

b. Tam thức đã cho có \(a = -1\) và biệt thức \(∆ = 1 > 0,\) và có hai nghiệm \({x_1} = 2,{x_2} = 3.\) Suy ra tam thức dương trong khoảng \((2 ; 3)\) và âm trong các khoảng \(\left( { - \infty ;2} \right)\) và \(\,\left( {3; + \infty } \right).\)

c. Tam thức đã cho có \(a = 2\), biệt thức \(∆ = 0\) nên tam thức dương với mọi \(x \ne  - \dfrac{{\sqrt 2 }}{2}.\)

Advertisements (Quảng cáo)

d. Tam thức đã cho có \(a = -4;\) biệt thức \(∆’ = 8 > 0\) và có hai nghiệm \({x_1} =  - \dfrac{{1 + \sqrt 2 }}{2},{x_2} = \dfrac{{\sqrt 2  - 1}}{2},\) nên tam thức dương trong khoảng \(\left( { - \dfrac{{1 + \sqrt 2 }}{2};\dfrac{{\sqrt 2  - 1}}{2}} \right)\) và âm trong các khoảng \(\left( { - \infty ; - \dfrac{{1 + \sqrt 2 }}{2}} \right)\) và \(\,\left( {\dfrac{{\sqrt 2  - 1}}{2}; + \infty } \right)\)

e. Tam thức đã cho có \(a = \sqrt 3 \) và biệt thức \(\Delta  = {\left( {\sqrt 3  + 1} \right)^2} - 4\sqrt 3  = {\left( {\sqrt 3  - 1} \right)^2} > 0,\) tam thức có hai nghiệm \({x_1} =  - 1,{x_2} =  - \dfrac{1}{{\sqrt 3 }}.\) Suy ra tam thức dương trong các khoảng \(\left( { - \infty ; - 1} \right),\left( {\dfrac{{ - 1}}{{\sqrt 3 }}; + \infty } \right)\) và âm trong khoảng \(\left( { - 1;\dfrac{{ - 1}}{{\sqrt 3 }}} \right).\)

Chú ý. Nhận xét \(a – b + c = 0\) nên tam thức có hai nghiệm

\({x_1} =  - 1,{x_2} =  - \dfrac{c}{a} =  - \dfrac{1}{{\sqrt 3 }}.\)

Từ đó áp dụng định lí về dấu tam thức.

f. Tam thức có \(a = 1\) và \(a + b + c = 0\), nên tam thức có hai nghiệm

\({x_1} =  - \sqrt 5 ,{x_2} = 1.\)

Suy ra tam thức luôn dương trong các khoảng \(\left( { - \infty ; - \sqrt 5 } \right),\left( {1; + \infty } \right)\) và âm trong khoảng \(\left( { - \sqrt 5 ;1} \right).\)

g. Tam thức đã cho có \(a = -0,3 < 0\), biệt thức \(∆ = -0,8 < 0,\) nên tam thức luôn âm với mọi \(x\).

h. Tam thức đã cho có \(a = 1,\)

\(\begin{array}{l}\Delta  = {\left( {\sqrt 7  - 1} \right)^2} - 4\sqrt 3  = 8 - 2\sqrt 7  - 4\sqrt 3 \\ = 2\left( {2 - \sqrt 7 } \right) + 4\left( {1 - \sqrt 3 } \right) < 0.\end{array}\)

Nên tam thức luôn dương với mọi \(x\).

Bạn đang xem bài tập, chương trình học môn SBT Toán 10 Nâng cao (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)