Chứng minh định lý về dấu của tam thức bậc 2.
Hướng dẫn: Với các trường hợp Δ < 0 và Δ = 0, sử dụng hệ thức đã biết:
\(f(x) = a{\rm{[(x}}\,{\rm{ + }}{b \over {2a}}{)^2} - {\Delta \over {4{a^2}}}{\rm{]}}\)
Hay \(af(x) = {a^2}[{(x + {b \over {2a}})^2} - {\Delta \over {4{a^2}}}]\)
Trong trường hợp Δ > 0, sử dụng hệ thức đã biết:
f(x) = a(x – x1)(x – x2) hay af(x) = a2(x – x1)(x – x2)
trong đó, x1 và x2 là hai nghiệm của tam thức bậc hai f(x)
Đáp án
Ta có: \(af(x) = {a^2}[{(x + {b \over {2a}})^2} - {\Delta \over {4{a^2}}}]\)
+ Nếu Δ < 0 thì af(x) > 0 với mọi x ∈ R, tức f(x) cùng dấu với a với mọi x ∈ R
Advertisements (Quảng cáo)
+ Nếu Δ = 0 thì \(af(x) = {a^2}{(x + {b \over {2a}})^{^2}}\) khi đó af(x) > 0 với mọi \(x \ne - {b \over {2a}}\)
+ Nếu Δ > 0 thì f(x) có hai nghiệm phân biệt x1 và x2 và:
f(x) = a(x – x1)(x – x2)
Do đó: af(x) = a2(x – x1)(x – x2)
Vậy af(x) có cùng dấu với tích (x – x1)(x – x2).
Dấu của tích này được cho trong bảng sau (x1 < x2)
Do đó: af(x) < 0 với mọi x ∈ (x1, x2)
Và af(x) > 0 với mọi x < x1 hoặc x > x2