Cho tam giác ABC nội tiếp trong đường tròn tâm O, H là trực tâm của tam giác, D là điểm đối xứng của A qua O.
a) Chứng minh tứ giác HCDB là hình bình hành.
b) Chứng minh: \(\overrightarrow {HA} + \overrightarrow {HD} = 2\overrightarrow {HO} \);
\(\overrightarrow {HA} + \overrightarrow {HB} + \overrightarrow {HC} = 2\overrightarrow {HO} \);
\(\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} = \overrightarrow {OH} \).
c) Gọi G là trọng tâm tam giác ABC.
Chứng minh \(\overrightarrow {OH} = 3\overrightarrow {OG} \)
Từ đó có kết luận gì về ba điểm O, H, G?
Gợi ý làm bài
(Xem h.1.55)
a) Vì AD là đường kính của đường tròn tâm O nên \(BD \bot AB,DC \bot AC\)
Ta có \(CH \bot AB,BH \bot AC\) nên suy ra CH // BD và BH // DC.
Advertisements (Quảng cáo)
Vậy tứ giác HCDB là hình bình hành.
b) Vì O là trung điểm của AD nên \(\overrightarrow {HA} + \overrightarrow {HD} = 2\overrightarrow {HO} (1)\)
Vì tứ giác HCDB là hình bình hành nên ta có \(\overrightarrow {HB} + \overrightarrow {HC} = \overrightarrow {HD} \).
Vậy từ (1) suy ra:
\(\overrightarrow {HA} + \overrightarrow {HB} + \overrightarrow {HC} = 2\overrightarrow {HO} (2)\)
Theo quy tắc ba điểm, từ (2) suy ra
\(\overrightarrow {HO} + \overrightarrow {OA} + \overrightarrow {HO} + \overrightarrow {OB} + \overrightarrow {HO} + \overrightarrow {OC} = 2\overrightarrow {HO} \)
Vậy \(\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} = \overrightarrow {OH} (3)\)
c) G là trọng tâm của tam giác ABC.
Ta có \(\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} = 3\overrightarrow {OG} \)
Từ (3) suy ra \(\overrightarrow {OH} = 3\overrightarrow {OG} \)
Vậy ba điểm O, H, G thẳng hàng.
Trong một tam giác trực tâm H, trọng tâm G và tâm đường tròn ngoại tiếp O thẳng hàng.