Không dùng bảng số và máy tính, chứng minh rằng
a) \(\sin {20^0} + 2\sin {40^0} - \sin {100^0} = \sin {40^0}\)
b) \({{\sin ({{45}^0} + \alpha ) - c{\rm{os(}}{{45}^0} + \alpha )} \over {\sin ({{45}^0} + \alpha ) + c{\rm{os(}}{{45}^0} + \alpha )}} = \tan \alpha \)
c) \({{3{{\cot }^2}{{15}^0} - 1} \over {3 - c{\rm{o}}{{\rm{t}}^2}{{15}^0}}} = - \cot {15^0}\)
d) \(\sin {200^0}\sin {310^0} + c{\rm{os34}}{{\rm{0}}^0}{\rm{cos5}}{{\rm{0}}^0}{\rm{ = }}{{\sqrt 3 } \over 2}\)
Gợi ý làm bài
a)
\(\eqalign{
& \sin {20^0} + 2\sin {40^0} - \sin {100^0} \cr
& = (\sin {20^0} - \sin {100^0}) + 2\sin {40^0} \cr} \)
=\(2\cos {60^0}\sin ( - {40^0}) + 2\sin {40^0}\)
=\( - \sin {40^0} + 2\sin {40^0} = \sin {40^0}\)
b)
\(\eqalign{
& {{\sin ({{45}^0} + \alpha ) - c{\rm{os(}}{{45}^0} + \alpha )} \over {\sin ({{45}^0} + \alpha ) + c{\rm{os(}}{{45}^0} + \alpha )}} \cr
& = {{\sin ({{45}^0} + \alpha ) - \sin {\rm{(}}{{45}^0} - \alpha )} \over {\sin ({{45}^0} + \alpha ) + \sin {\rm{(}}{{45}^0} - \alpha )}} \cr} \)
=\({{2\cos {{45}^0}\sin \alpha } \over {2\sin {{45}^0}\cos \alpha }} = {{\sqrt 2 \sin \alpha } \over {\sqrt 2 \cos \alpha }} = \tan \alpha \)
c)
\({{3{{\cot }^2}{{15}^0} - 1} \over {3 - c{\rm{o}}{{\rm{t}}^2}{{15}^0}}} = {{{{\cot }^2}{{30}^0}{{\cot }^2}{{15}^0} - 1} \over {c{\rm{o}}{{\rm{t}}^2}{{30}^0} - {{\cot }^2}{{15}^0}}}\)
Advertisements (Quảng cáo)
=\({{\cot {{30}^0}\cot {{15}^0} + 1} \over {c{\rm{ot}}{{30}^0} - \cot {{15}^0}}}.{{\cot {{30}^0}\cot {{15}^0} - 1} \over {c{\rm{ot}}{{30}^0} + \cot {{15}^0}}}\)
Mặt khác ta có
\(\cot (\alpha + \beta ) = {{\cos (\alpha + \beta )} \over {\sin (\alpha + \beta )}} = {{\cos \alpha \cos \beta - \sin \alpha \sin \beta } \over {\sin \alpha \cos \beta + \cos \alpha \sin \beta }}\)
Chia cả tử và mẫu của biểu thức cho \(\sin \alpha \sin \beta \) ta được
\(\cot (\alpha + \beta ) = {{\cot \alpha \cot \beta - 1} \over {\cot \alpha + \cot \beta }}\)
Tương tự
\(\cot (\alpha - \beta ) = {{\cot \alpha \cot \beta + 1} \over {\cot \beta - \cot \alpha }}\)
Do đó
\(A = \cot ({15^0} - {30^0})\cot ({15^0} + {30^0}) = - \cot {15^0}\)
d)
\(\sin {200^0}\sin {310^0} + c{\rm{os34}}{{\rm{0}}^0}{\rm{cos5}}{{\rm{0}}^0}\)
= \(\sin ({180^0} + {20^0})\sin ({360^0} - {50^0}) + c{\rm{os(36}}{{\rm{0}}^0}{\rm{ - 2}}{{\rm{0}}^0}{\rm{)cos5}}{{\rm{0}}^0}\)
\( = ( - \sin {20^0})( - \sin {50^0}) + \cos {20^0}\cos {50^0}\)
\( = \cos {50^0}\cos {20^0} + \sin {50^0}\sin {20^0}\)
= \(\cos ({50^0} - {20^0}) = {{\sqrt 3 } \over 2}\)