Chứng minh rằng với \({0^0} \le \alpha \le {180^0}\) ta có:
a) \({(\sin x + \cos x)^2} = 1 + 2\sin x\cos x\)
b) \({(\sin x - \cos x)^2} = 1 - 2\sin x\cos x\)
c) \({\sin ^4}x + {\cos ^4}x = 1 - 2{\sin ^2}x{\cos ^2}x\)
Gợi ý làm bài
Advertisements (Quảng cáo)
a)
\(\eqalign{
& {(\sin x + \cos x)^2} = {\sin ^2}x + {\cos ^2}x + 2\sin x\cos x \cr
& = 1 + 2\sin x\cos x \cr} \)
b)
\(\eqalign{
& {(\sin x - \cos x)^2} = {\sin ^2}x + {\cos ^2}x - 2\sin x\cos x \cr
& = 1 - 2\sin x\cos x \cr} \)
\(\eqalign{
& c){\sin ^4}x + {\cos ^4}x \cr
& = {({\sin ^2}x)^2} + {({\cos ^2}x)^2} + 2{\sin ^2}x{\cos ^2}x - 2{\sin ^2}x{\cos ^2}x \cr
& = {({\sin ^2}x + {\cos ^2}x)^2} - 2{\sin ^2}x{\cos ^2}x \cr
& = 1 - 2{\sin ^2}x{\cos ^2}x \cr} \)