Trang chủ Lớp 10 SBT Toán lớp 10 (sách cũ) Bài 2.28 trang 92 SBT Toán Hình học 10: Trong mặt phẳng...

Bài 2.28 trang 92 SBT Toán Hình học 10: Trong mặt phẳng Oxy cho bốn điểm...

Trong mặt phẳng Oxy cho bốn điểm . Bài 2.28 trang 92 Sách bài tập (SBT) Toán Hình học 10 - Bài 2: Tích vô hướng của hai vec tơ

Trong mặt phẳng Oxy cho bốn điểm A(3;4), B(4;1), C(2; - 3), D( - 1;6). Chứng minh tứ giác ABCD nội tiếp được trong một đường tròn.

Gợi ý làm bài

Muốn chứng minh tứ giác ABCD nội tiếp được trong một đường tròn, ta chứng minh tứ giác này có hai góc đối bù nhau. Khi đó hai góc này có cô sin đối nhau.

Theo giả thiết ta có:

\(\eqalign{
& \overrightarrow {AB} = (1; - 3),\overrightarrow {AD} = ( - 4;2), \cr
& \overrightarrow {CB} = (2;4);\overrightarrow {CD} = ( - 3;9) \cr} \)

Advertisements (Quảng cáo)

Do đó:

\(\eqalign{
& \cos (\overrightarrow {AB} ,\overrightarrow {AD} ) = {{\overrightarrow {AB} .\overrightarrow {AD} } \over {\left| {\overrightarrow {AB} } \right|.\left| {\overrightarrow {AD} } \right|}} \cr
& = {{1.( - 4) + ( - 3).2} \over {\sqrt {1 + 9} .\sqrt {16 + 4} }} = {{ - 10} \over {\sqrt {200} }} = - {1 \over {\sqrt 2 }} \cr} \)

\(\eqalign{
& \cos (\overrightarrow {CB} ,\overrightarrow {AD} ) = {{\overrightarrow {CB} .\overrightarrow {CD} } \over {\left| {\overrightarrow {CB} } \right|.\left| {\overrightarrow {CD} } \right|}} \cr
& = {{2.( - 3) + 4.9} \over {\sqrt {4 + 16} .\sqrt {9 + 81} }} = {{30} \over {\sqrt {1800} }} = {1 \over {\sqrt 2 }} \cr} \)

Vì \(\cos (\overrightarrow {AB} ,\overrightarrow {AD} ) =  - \cos (\overrightarrow {CB} ,\overrightarrow {CD} )\) nên hai góc này bù nhau. Vậy tứ giác ABCD nội tiếp được trong một đường tròn.

Bạn đang xem bài tập, chương trình học môn SBT Toán lớp 10 (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)