Cho hình bình hành ABCD có AB = 3a, AD = 5a, góc BAD bằng \({120^0}\)
a) Tìm các tích vô hướng sau: \(\overrightarrow {AB} .\overrightarrow {AD,} \overrightarrow {AC} .\overrightarrow {BD} \)
b) Tính độ dài BD và bán kính đường tròn ngoại tiếp tam giác ABC.
Gợi ý làm bài
a)
\(\eqalign{
& \overrightarrow {AB} .\overrightarrow {AD} = AB.AD.cos\widehat {DAB} \cr
& = 3a.5a.\cos {120^0} = - {{15{a^2}} \over 2} \cr} \)
\(\eqalign{
& \overrightarrow {AC} .\overrightarrow {BD} = (\overrightarrow {AD} + \overrightarrow {AB} )(\overrightarrow {AD} - \overrightarrow {AB} ) \cr
& = A{D^2} - A{B^2} = 16{a^2} \cr} \)
b)
Advertisements (Quảng cáo)
\(\eqalign{
& {\overrightarrow {BD} ^2} = {(\overrightarrow {AD} - \overrightarrow {AB} )^2} = A{D^2} + A{B^2} - 2\overrightarrow {AD} .\overrightarrow {AB} \cr
& = 49{a^2} = > BD = 7a \cr} \)
ABCD là hình bình hành nên: BC = AD = 5a;
\(\widehat {BAD} + \widehat {ABC} = {180^0} = > \widehat {ABC} = {60^0}\)
Áp dụng định lí hàm số cô sin trong tam giác ABC, ta được:
\(\eqalign{
& A{C^2} = B{C^2} + A{B^2} - 2BC.AB.\cos \widehat {ABC} \cr
& = 19{a^2} = > AC = a\sqrt {19} \cr} \)
Áp dụng định lí hàm số sin trong tam giác ABC, ta được:
\(R = {{AC} \over {2\sin \widehat {ABC}}} = {{a\sqrt {19} } \over {2\sin {{60}^0}}} = a{{\sqrt {57} } \over 3}\)