Trong mặt phẳng tọa độ Oxy cho elip (E) : \({{{x^2}} \over {25}} + {{{y^2}} \over 9} = 1\)
a) Xác định độ dài các trục, tiêu cự của elip (E) ;
b) Tìm các điểm M thuộc (E) sao cho \({1 \over {M{F_1}}} + {1 \over {M{F_2}}} = {8 \over {{F_1}{F_2}}}\).
Gợi ý làm bài
\((E):{{{x^2}} \over {25}} + {{{y^2}} \over 9} = 1\)
a) Ta có :
\(\left\{ \matrix{
{a^2} = 25 \Rightarrow a = 5 \hfill \cr
{b^2} = 9 \Rightarrow b = 3 \hfill \cr} \right.\)
Advertisements (Quảng cáo)
\( \Rightarrow {c^2} = {a^2} - {b^2} = 25 - 9 = 16 \Rightarrow c = 4.\)
Độ dài trục lớn : \({A_1}{A_2} = 2a = 10\); Độ dài trục bé : \({B_1}{B_2} = 2b = 6\). Tiêu cự : \({F_1}{F_2} = 2c = 8\)
b) M thuộc \((E) \Rightarrow \left\{ \matrix{
M{F_1} = a + {c \over a}x = 5 + {4 \over 5}x \hfill \cr
M{F_2} = a - {c \over a}x = 5 - {4 \over 5}x \hfill \cr} \right.\)
\({1 \over {M{F_1}}} + {1 \over {M{F_2}}} = {8 \over {{F_1}{F_2}}} \Leftrightarrow 25 - {{16} \over {25}}{x^2} = 10\)
\( \Leftrightarrow x \pm {{5\sqrt {15} } \over 4} \Rightarrow y = \pm {3 \over 4}\)
Vậy : có bốn điểm thỏa mãn yêu cầu bào toán là: \(M\left( { \pm {{5\sqrt {15} } \over 4}; \pm {3 \over 4}} \right).\)