Trang chủ Lớp 10 Toán lớp 10 Nâng cao (sách cũ) Bài 30 trang 59 SGK Đại số 10 nâng cao, Viết mỗi...

Bài 30 trang 59 SGK Đại số 10 nâng cao, Viết mỗi hàm số sau đây thành dạng y = a(x - p)2 + q...

Viết mỗi hàm số sau đây thành dạng y = a(x - p)2 + q. Bài 30 trang 59 SGK Đại số 10 nâng cao - Bài 3: Hàm số bậc hai

Viết mỗi hàm số sau đây thành dạng \(y{\rm{ }} = {\rm{ }}a{\left( {x{\rm{ }} - {\rm{ }}p} \right)^2} + q\) từ đó hãy cho biết đồ thị của nó có thể suy ra từ đồ thị hàm số nào nhờ các phép tịnh tiến đồ thị song song với các trục tọa độ và mô tả cụ thể các phép tịnh tiến.

a) \(y{\rm{ }} = {\rm{ }}{x^2} - {\rm{ }}8x{\rm{ }} + {\rm{ }}12\);

b) \({y{\rm{ }} = {\rm{ }} - 3{x^2} - {\rm{ }}12x{\rm{ }} + {\rm{ }}9}\)

a) Ta có:

Advertisements (Quảng cáo)

\(y{\rm{ }} = {\rm{ }}{x^2} - {\rm{ }}8x{\rm{ }} + {\rm{ }}16{\rm{ }}-{\rm{ }}4{\rm{ }} = {\rm{ }}{\left( {x{\rm{ }}-{\rm{ }}4} \right)^2}-{\rm{ }}4\)

Đồ thị hàm số \(y = {\rm{ }}{\left( {x{\rm{ }}-{\rm{ }}4} \right)^2}-{\rm{ }}4\) có được nhờ tịnh tiến liên tiếp đồ thị hàm số \(y = x^2\) về phải 4 đơn vị, rồi xuống dưới 4 đơn vị.

b) Ta có:

\(y{\rm{ }} = {\rm{ }} - 3\left( {{x^2} + {\rm{ }}4x{\rm{ }} + {\rm{ }}4} \right){\rm{ }} + {\rm{ }}21\)
\(\Leftrightarrow y{\rm{ }} = {\rm{ }} - 3{{\left( {x{\rm{ }} + {\rm{ }}2} \right)}^{2}} + {\rm{ }}21 \)

Đồ thị hàm số \(y{\rm{ }} = {\rm{ }} - 3{{\left( {x{\rm{ }} + {\rm{ }}2} \right)}^{2}} + {\rm{ }}21 \) có được nhờ tịnh tiến liên tiếp đồ thị hàm số \(y = -3x^2\) sang trái 2 đơn vị, rồi lên trên 21 đơn vị.

Bạn đang xem bài tập, chương trình học môn Toán lớp 10 Nâng cao (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)