Trang chủ Lớp 10 Toán lớp 10 Nâng cao (sách cũ) Bài 36 trang 127 SGK Đại số 10 nâng cao, Giải và...

Bài 36 trang 127 SGK Đại số 10 nâng cao, Giải và biện luận các bất phương trình:...

Giải và biện luận các bất phương trình:. Bài 36 trang 127 SGK Đại số 10 nâng cao - Bài 4: Dấu của nhị thức bậc nhất

Giải và biện luận các bất phương trình:

a) mx+4 > 2x+m2

b) 2mx+1 ≥ x+4m2

c) x(m2-1) < m4-1

d) 2(m+1)x ≤ (m+1)2(x-1)

Đáp án

a) Ta có:

mx + 4 > 2x + m2 ⇔ (m – 2)x > m2 – 4

+ Nếu m > 2 thì \(S = (m + 2, +∞)\)

+ Nếu m < 2 thì \(S = (-∞; m + 2)\)

+ Nếu m = 2 thì \(S = Ø\)

b) Ta có:

\(2mx+1 ≥ x+4m^2⇔ (2m – 1)x ≥ 4m^2– 1\)

Advertisements (Quảng cáo)

 + Nếu \(m > {1 \over 2}\) thì \(S = [2m +1; +∞)\)

+ Nếu \(m < {1 \over 2}\) thì \(S = (-∞; 2m + 1]\)

+ Nếu \(m = {1 \over 2}\) thì \(S =\mathbb R\)

c) x(m2-1) < m4-1

+ Nếu m2 – 1 > 0 ⇔ m < -1 hoặc m > 1 thì \(S = (-∞, m^2+ 1)\)

+ Nếu m2 – 1 < 0 ⇔ -1 < m < 1 thì \(S = (m^2+1, +∞)\)

+ Nếu \(m = ±1\) thì \(S = Ø\)

d) \(2\left( {m + 1} \right)x{\rm{ }} \le {\rm{ }}{\left( {m + 1} \right)^2}\left( {x - 1} \right){\rm{ }} \)

\(\Leftrightarrow {\rm{ }}({m^2}-{\rm{ }}1)x{\rm{ }} \ge {\rm{ }}{\left( {m{\rm{ }} + {\rm{ }}1} \right)^2}\)

+ Nếu m2 – 1 > 0 ⇔ m < -1 hoặc m > 1 thì \(S = {\rm{[}}{{m + 1} \over {m - 1}}; + \infty )\)

+ Nếu m2 -1 < 0 ⇔ -1 < m < 1 thì \(S = ( - \infty ;{{m + 1} \over {m - 1}}{\rm{]}}\)

+ Nếu \(m = -1\) thì \(S =\mathbb R\)

+ Nếu \(m = 1\) thì \(0x ≥ 4; S = Ø\)

Bạn đang xem bài tập, chương trình học môn Toán lớp 10 Nâng cao (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)