Khảo sát sự biến thiên của mỗi hàm số sau và lập bảng biến thiên của nó:
a) y = x2 + 2x – 2 trên mỗi khoảng \((-∞; -1)\) và \((-1, +∞)\)
b) y = -2x + 4x + 1 trên mỗi khoảng \((-∞; 1)\) và \((1, +∞)\)
c) \(y = {2 \over {x - 3}}\) trên mỗi khoảng \((-∞; 3)\) và \((3, +∞)\)
a)
+ Với mọi x1; x2 ∈ \((-∞; -1)\) và x1 ≠ x2 ta có:
f(x2) – f(x1) = x22 + 2x2 – 2 – (x12 + 2x1 – 2)
= x22 – x12 + 2(x2 – x1) = (x2 – x1)(x1 + x2 + 2)
\(\Rightarrow {{f({x_2}) - f({x_1})} \over {{x_2} - {x_1}}} = {x_1} + {x_2} + 2\)
Vì x1 < -1 và x2 < -1 nên x1 + x2 + 2 < 0
Nên \( \Rightarrow {{f({x_2}) - f({x_1})} \over {{x_2} - {x_1}}} < 0\)
Vậy hàm số y = x2 + 2x – 2 nghịch biến trên \((-∞; -1)\)
+ Với mọi x1; x2 ∈ \((-1, +∞)\) và x1 ≠ x2 ta có:
\({{f({x_2}) - f({x_1})} \over {{x_2} - {x_1}}} = {x_1} + {x_2} + 2 > 0\)
( Vì x1 > -1; x2 > -1)
Vậy hàm số y = x2 + 2x – 2 đồng biến trên \((-1, +∞)\)
b)
+ Với mọi x1; x2 ∈ \((-∞; 1)\) và x1 ≠ x2 ta có:
Advertisements (Quảng cáo)
f(x2) – f(x1) = (-2x22 + 4x2 + 1) – (-2x12 + 4x1 + 1)
= -2(x22 - x12) + 4(x2 - x1) = 2(x2 - x1)(2 – x1 – x2)
\( \Rightarrow {{f({x_2}) - f({x_1})} \over {{x_2} - {x_1}}} = 2(2 - {x_1} - {x_2})\)
Vì x1 < 1 và x2 < 1 nên 2 - x1 – x2 > 0
Vậy hàm số y = -2x + 4x + 1 đồng biến trên khoảng \((-∞; 1)\)
+ Với mọi x1; x2 ∈ \((1; +∞)\) và x1 ≠ x2 ta có:
\({{f({x_2}) - f({x_1})} \over {{x_2} - {x_1}}} = 2(2 - {x_1} - {x_2}) < 0\)
(vì x1 > 1 và x2 > 1 )
Vậy hàm số số y = -2x + 4x + 1 nghịch biến trên khoảng \((1; +∞)\)
c)
+ Với x1, x2 ∈ \((- ∞; 3)\) với x1 ≠ x2 ta có:
\(\eqalign{
& f({x_2}) - f({x_1}) = {2 \over {{x_2} - 3}} - {2 \over {{x_1} - 3}} \cr
& = {{2({x_1} - 3) - 2({x_2} - 3)} \over {({x_1} - 3)({x_2} - 3)}} = {{2({x_1} - {x_2})} \over {({x_1} - 3)({x_2} - 3)}} \cr
& \Rightarrow {{f({x_2}) - f({x_1})} \over {{x_2} - {x_1}}} = {{ - 2} \over {({x_1} - 3)({x_2} - 3)}} \cr} \)
(vì x1 < 3; x2 < 3 nên (x1 – 3)(x2 – 3) > 0)
\(\Rightarrow {{f({x_2}) - f({x_1})} \over {{x_2} - {x_1}}}<0\)
Vậy hàm số \(y = {2 \over {x - 3}}\) nghịch biến trên \((- ∞; 3)\)
+ Với x1, x2 ∈ \((3; +∞)\) với x1 ≠ x2 ta có:
\({{f({x_2}) - f({x_1})} \over {{x_2} - {x_1}}} = {{ - 2} \over {({x_1} - 3)({x_2} - 3)}} < 0\)
(vì x1 > 3; x2 > 3 nên (x1 – 3)(x2 – 3) > 0)
Vậy hàm số \(y = {2 \over {x - 3}}\) nghịch biến trên \((3; + ∞)\)