Trang chủ Lớp 10 Toán lớp 10 Nâng cao (sách cũ) Bài 40 trang 127 SGK Đại số 10 nâng cao, Giải bất...

Bài 40 trang 127 SGK Đại số 10 nâng cao, Giải bất phương trình và bất phương trình...

Giải bất phương trình và bất phương trình. Bài 40 trang 127 SGK Đại số 10 nâng cao - Bài 4: Dấu của nhị thức bậc nhất

Giải bất phương trình và bất phương trình

a) |x + 1| + |x – 1| = 4

b) \({{|2x - 1|} \over {(x + 1)(x - 2)}} > {1 \over 2}\)

a) Ta có bảng xét dấu:  

i) Với \(x < -1\), ta có (1) \(⇔ - x – 1 – x + 1 = 4 ⇔ x = -2\) (nhận)

ii) Với \(-1 ≤ x ≤  1\), ta có: (1) \(⇔ x + 1 – x + 1 = 4 ⇔ 2 = 4\) (vô nghiệm)

iii) Với \(x > 1\), ta có (1) \(⇔ x + 1 + x – 1 = 4 ⇔ x = 2\) (nhận)

Vậy S = {-2, 2}

b) Ta có:

i) Nếu \(x \le {1 \over 2}\) thì bất phương trình trở thành: \({{ - 2x + 1} \over {(x + 1)(x - 2)}} > {1 \over 2}\)

Advertisements (Quảng cáo)

Ta có:

\(\eqalign{
& {{ - 2x + 1} \over {(x + 1)(x - 2)}} > {1 \over 2}\cr& \Leftrightarrow {{2( - 2x + 1) - (x + 1)(x - 2)} \over {2(x + 1)(x - 2)}} > 0 \cr
& \Leftrightarrow {{ - {x^2} - 3x + 4} \over {2(x + 1)(x - 2)}} > 0 \Leftrightarrow {{(x - 1)(x + 4)} \over {2(x + 1)(x - 2)}} < 0 \cr} \)

Lập bảng xét dấu:

Trường hợp này ta có: \(-4 < x < -1\)

ii) Nếu \(x > {1 \over 2}\) thì bất phương trình đã cho trở thành: \({{2x - 1} \over {(x + 1)(x - 2)}} > {1 \over 2}\)

Ta có:

\(\eqalign{
& {{2x - 1} \over {(x + 1)(x - 2)}} > {1 \over 2} \cr&\Leftrightarrow {{2(2x - 1) - (x + 1)(x - 2)} \over {2(x + 1)(x - 2)}} > 0 \cr
& \Leftrightarrow {{x(x - 5)} \over {2(x + 1)(x - 2)}} < 0 \cr} \)

Lập bảng xét dấu trên nửa khoảng \(({1 \over 2}, + \infty )\)

Trong trường hợp này ta có: \(2 < x < 5\)

Vậy \(S = (-4, -1)  ∪ (2, 5)\)

Bạn đang xem bài tập, chương trình học môn Toán lớp 10 Nâng cao (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)