Chứng minh rằng:
a) sin11π12cos5π12=14(2−√3)
b) cosπ7cos3π7cos5π7=−18
c) sin60sin420sin660sin780=16 (Hướng dẫn: Nhân hai vế với cos 60)
Đáp án
a) Ta có:
sin11π12cos5π12=sin(π−π12)cos(π2−π12)=sin2π12=12(1−cosπ6)=12(1−√32)=14(2−√3)
Advertisements (Quảng cáo)
b) Ta có:
cos3π7=cos(π−4π7)=−cos4π7cos5π7=cos(π−2π7)=−cos2π7
Nên:
cosπ7cos3π7cos5π7=cosπ7cos2π7cos4π7=1sinπ7(sinπ7cosπ7)cos2π7cos4π7=1sinπ7.12(sin2π7cos2π7).cos4π7=1sinπ7.14sin4π7.cos4π7=18sinπ7.sin8π7=−sinπ78sinπ7=−18
c) Ta có:
sin60sin420sin660sin780=sin60cos480cos240cos120=1cos60(sin60cos60)cos120cos240cos480=1cos60(12sin120cos120)cos240.cos480=1cos60.14sin240cos240.cos480=1cos60.18sin480cos480=1cos60.116.sin960=cos6016cos60=116