Bài 5. Cho đoạn thẳng \(AB\) và điểm \(I\) sao cho \(2\overrightarrow {IA} + 3\overrightarrow {IB} = \overrightarrow 0\)
a) Tim số \(k\) sao cho \(\overrightarrow {AI} = k\overrightarrow {AB} \).
b) Chứng minh rằng với mọi điểm \(M\), ta có
\(\overrightarrow {MI} = {2 \over 5}\overrightarrow {MA} + {3 \over 5}\overrightarrow {MB} \).
Advertisements (Quảng cáo)
a) Ta có \(2\overrightarrow {IA} + 3\overrightarrow {IB} = \overrightarrow 0 \,\, \Leftrightarrow \, - 2\overrightarrow {AI} + 3(\overrightarrow {AB} - \overrightarrow {AI} ) = \overrightarrow 0 \)
\( \Leftrightarrow - 5\overrightarrow {AI} = - 3\overrightarrow {AB} \,\,\, \Leftrightarrow \overrightarrow {AI} = {3 \over 5}\overrightarrow {AB.} \,\)Vậy \(k = {3 \over 5}\).
b) Từ \(2\overrightarrow {IA} + 3\overrightarrow {IB} = \overrightarrow 0 \) suy ra với mọi điểm \(M\) ta có:
\(2(\overrightarrow {MA} - \overrightarrow {MI} ) + 3(\overrightarrow {MB} - \overrightarrow {MI} ) = \overrightarrow 0 \)
\( \Rightarrow \,5\overrightarrow {MI} = 2\overrightarrow {MA} + 3\overrightarrow {MB} \,\,\, \Rightarrow \,\overrightarrow {MI} = {2 \over 5}\overrightarrow {MA} + {3 \over 5}\overrightarrow {MB} \)