Trang chủ Lớp 10 Toán lớp 10 Nâng cao (sách cũ) Bài 61 trang 136 SGK Đại số 10 nâng cao, Tìm tập...

Bài 61 trang 136 SGK Đại số 10 nâng cao, Tìm tập xác định của mỗi hàm số sau:...

Tìm tập xác định của mỗi hàm số sau:. Bài 61 trang 136 SGK Đại số 10 nâng cao - Bài 7: Bất phương trình bậc hai

Tìm tập xác định của mỗi hàm số sau:

a) \(y = \sqrt {(2x + 5)(1 - 2x)} \)

b) \(y = \sqrt {{{{x^2} + 5x + 4} \over {2{x^2} + 3x + 1}}} \)

Đáp án

a) Hàm số đã cho xác định

\(⇔ (2x + 5)(1 – 2x) ≥ 0\)

Advertisements (Quảng cáo)

\( \Leftrightarrow  - {5 \over 2} \le x \le {1 \over 2}\)

Vậy tập xác định \(D = {\rm{[}} - {5 \over 2},{1 \over 2}{\rm{]}}\)

b) Hàm số đã cho xác định:

\(\eqalign{
& \Leftrightarrow {{{x^2} + 5x + 4} \over {2{x^2} + 3x + 1}} \ge 0 \Leftrightarrow {{(x + 1)(x + 4)} \over {(x + 1)(2x + 1)}} \ge 0 \cr
& \Leftrightarrow \left\{ \matrix{
x \ne - 1 \hfill \cr
{{x + 4} \over {2x + 1}} \ge 0 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
x \ne - 1 \hfill \cr
\left[ \matrix{
x \le - 4 \hfill \cr
x > - {1 \over 2} \hfill \cr} \right. \hfill \cr} \right. \Leftrightarrow \left[ \matrix{
x \le - 4 \hfill \cr
x > - {1 \over 2} \hfill \cr} \right. \cr} \) 

Vậy tập xác định của hàm số là: \(S = ( - \infty , - 4{\rm{]}} \cup ( - {1 \over 2}, + \infty )\)

Bạn đang xem bài tập, chương trình học môn Toán lớp 10 Nâng cao (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)