Trang chủ Lớp 10 Toán lớp 10 Nâng cao (sách cũ) Bài 7 trang 119 Hình học 10 Nâng cao: Chứng minh rằng...

Bài 7 trang 119 Hình học 10 Nâng cao: Chứng minh rằng nếu hai đường tròn không đồng tâm thì tập hợp các điểm có cùng phương tích đối với hai đường tròn là một đường thẳng...

Chứng minh rằng nếu hai đường tròn không đồng tâm thì tập hợp các điểm có cùng phương tích đối với hai đường tròn là một đường thẳng. Bài 7 trang 119 SGK Hình học 10 nâng cao - Ôn tập chương III – Phương pháp tọa độ trong mặt phẳng

a) Biết đường tròn (C) có phương trình x2+y2+2ax+2by+c=0. Chứng minh rằng phương tích của điểm M(x0;y0) đối với đường tròn (C) bằng x20+y20+2ax0+2by0+c.

b) Chứng minh rằng nếu hai đường tròn không đồng tâm thì tập hợp các điểm có cùng phương tích đối với hai đường tròn là một đường thẳng (gọi là trục đẳng phương của hai đường tròn).

a) Đường tròn  (C) có tâm I(-a, -b) ,bán kính R=a2+b2c

Phương tích của điểm M(x0;y0) đối với đường tròn (C) là

M/(C)=MI2R2=(xo+a)2+(yo+b)2(a2+b2c)=x2o+y2o+2axo+2byo+c

b) Cho hai đường tròn không đồng tâm

Advertisements (Quảng cáo)

(C1):x2+y2+2a1x+2b1y+c1(C2):x2+y2+2a2x+2b2y+c2 

Gọi M(x0;y0) là điểm có cùng phương tích đối với (C1) và (C2)  thì

x2o+y2o+2a1xo+2b1yo+c1=x2o+y2o+2a2xo+2b2yo+c22(a1a2)xo+2(b1b2)yo+c1c2=0(1)

(C1) và (C2) không đồng tâm nên a1a2 và b1b2 không đồng thời bằng 0 ( tức (a1a2)2+(b1b2)20)

Do đó M(x0;y0) nằm trên đường thẳng có phương trình:

Δ2(a1a2)x+2(b1b2)y+c1c2=0

Vậy tập hợp điểm M là đường thẳng Δ .

Bạn đang xem bài tập, chương trình học môn Toán lớp 10 Nâng cao (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)