Trang chủ Lớp 10 Toán lớp 10 Nâng cao (sách cũ) Bài 7 trang 52 Hình học 10 Nâng cao: Cho bốn điểm...

Bài 7 trang 52 Hình học 10 Nâng cao: Cho bốn điểm bất kì A, B, C, D. Chứng minh rằng...

Cho bốn điểm bất kì A, B, C, D. Chứng minh rằng. Bài 7 trang 52 SGK Hình học 10 nâng cao - Bài 2. Tích vô hướng của hai vectơ

Bài 7. Cho bốn điểm bất kì \(A, B, C, D\). Chứng minh rằng

\(\overrightarrow {DA} .\overrightarrow {BC}  + \overrightarrow {DB} .\overrightarrow {CA}  + \overrightarrow {DC} .\overrightarrow {AB}  = 0\).

Từ đó suy ra một cách chứng minh định lí: “Ba đường cao của một tam giác đồng quy”.

Advertisements (Quảng cáo)

Ta có

\(\eqalign{
& \,\,\,\,\overrightarrow {DA} .\overrightarrow {BC} + \overrightarrow {DB} .\overrightarrow {CA} + \overrightarrow {DC} .\overrightarrow {AB} \cr
& = \overrightarrow {DA} (\overrightarrow {DC} - \overrightarrow {DB} ) + \overrightarrow {DB} (\overrightarrow {DA} - \overrightarrow {DC} ) + \overrightarrow {DC} (\overrightarrow {DB} - \overrightarrow {DA} ) \cr
& = \overrightarrow {DA} \overrightarrow {DC} - \overrightarrow {DA} \overrightarrow {DB} + \overrightarrow {DB} \overrightarrow {DA} - \overrightarrow {DB} \overrightarrow {DC} + \overrightarrow {DC} \overrightarrow {DB} - \overrightarrow {DC} \overrightarrow {DA} = 0 \cr} \)

Gọi \(D\) là giao điểm của hai đường cao \(AA’, BB’\) của tam giác \(ABC\).

Ta có \(\overrightarrow {DA} .\overrightarrow {BC}  = 0\,;\,\,\overrightarrow {DB} .\overrightarrow {CA}  = 0\)                 

Từ đó suy ra \(\overrightarrow {DC} .\overrightarrow {AB}  = 0\), do đó \(DC \bot AB\). Vậy \(D\) nằm trên đường cao \(CC’\) của tam giác \(ABC\), tức là ba đường cao trong tam giác đồng quy.

Bạn đang xem bài tập, chương trình học môn Toán lớp 10 Nâng cao (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)