Trang chủ Lớp 10 Toán lớp 10 Nâng cao (sách cũ) Bài 74 trang 154 SGK Đại số 10 nâng cao, Tìm các...

Bài 74 trang 154 SGK Đại số 10 nâng cao, Tìm các giá trị của m sao cho phương trình:...

Tìm các giá trị của m sao cho phương trình:. Bài 74 trang 154 SGK Đại số 10 nâng cao - Bài 8: Một số phương trình và bất phương trình quy về bậc hai

Tìm các giá trị của m sao cho phương trình:

x4 + (1 - 2m)x2 + m2 – 1 = 0

a) Vô nghiệm

b) Có hai nghiệm phân biệt

c) Có bốn nghiệm phân biệt

Đáp án

Đặt y = x2 ; y ≥ 0, ta được phương trình:

y2 + (1 – 2m)y + m2 – 1 = 0   (1)

a) Phương trình đã cho vô nghiệm ⇔ (1) vô nghiệm hoặc (1) chỉ có nghiệm âm

Phương trình (1) vô nghiệm khi và chỉ khi:

\(\eqalign{
& \Delta = {(1 - 2m)^2} - 4({m^2} - 1) = 5 - 4m < 0 \cr
& \Rightarrow m > {5 \over 4} \cr} \)

Phương trình (1) chỉ có nghiệm âm khi và chỉ khi:

\(\left\{ \matrix{
\Delta \ge 0 \hfill \cr
P > 0 \hfill \cr
S < 0 \hfill \cr} \right.\)

Advertisements (Quảng cáo)

Thay Δ = 5 – 4m, P = m2– 1 và S = 2m – 1, ta có hệ:

\(\left\{ \matrix{
5 - 4m \ge 0 \hfill \cr
{m^2} - 1 > 0 \hfill \cr
2m - 1 < 0 \hfill \cr} \right. \Leftrightarrow m < - 1\) 

Vậy phương trình đã cho vô nghiệm khi và chỉ khi

\(\left[ \matrix{
m < - 1 \hfill \cr
m > {5 \over 4} \hfill \cr} \right.\)

b) Phương trình đã cho có hai nghiệm phân biệt khi và chỉ khi phương trình (1) có hai nghiệm trái dấu hoặc có một nghiệm kép dương.

Ta xét hai trường hợp:

+ Phương trình (1) có hai nghiệm trái dấu khi và chỉ khi:

P = m2  - 1 < 0 hay -1 < m < 1

Nếu Δ = 0 hoặc \(m = {5 \over 4}\) thì phương trình (1) có một nghiệm kép dương \(x = {3 \over 4}\)

Vậy phương trình (1) có hai nghiệm phân biệt khi và chỉ khi:

 \(m \in ( - 1,1) \cup {\rm{\{ }}{5 \over 4}{\rm{\} }}\)

c) Phương trình đã cho có bốn nghiệm phân biệt khi và chỉ khi phương trình (1) có hai nghiệm dương phân biệt, tức là:

\(\left\{ \matrix{
\Delta > 0 \hfill \cr
P < 0 \hfill \cr
S > 0 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
5 - 4m > 0 \hfill \cr
{m^2} - 1 > 0 \hfill \cr
2m - 1 > 0 \hfill \cr} \right. \Leftrightarrow 1 < m < {5 \over 4}\)

Bạn đang xem bài tập, chương trình học môn Toán lớp 10 Nâng cao (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)