Bài 1. Tính
a) cos2250,sin2400,cot(−150),tan750;
b) sin7π12, cos(−π12), tan(13π12)
a)
+) cos2250=cos(1800+450)=−cos450=−√22
+) sin2400=sin(1800+600)=−sin600=−√32
+) cot(−150)=−cot150=−tan750=−tan(300+450)
=−tan300−tan4501−tan300tan450=−1√3−11−1√3=−√3+1√3−1=−(√3+1)22=−2−√3
Advertisements (Quảng cáo)
+) tan750=cot150=2+√3
b)
+) sin7π12=sin(π3+π4)=sinπ3cosπ4+cosπ3sinπ4
=√22(√32+12)=√6+√24
+) cos(−π12)=cos(π4−π3)=cosπ4cosπ3+sinπ3sinπ4
=√22(√32+12)=0,9659
+) \tan \left ( \frac{13\pi }{12} \right ) = \tan(π + \frac{\pi }{12}) = \tan \frac{\pi }{12} = \tan \left ( \frac{\pi }{3}-\frac{\pi}{4} \right )
= \frac{\tan\frac{\pi }{3}-\tan\frac{\pi }{4}}{1+\tan\frac{\pi }{3}\tan\frac{\pi }{4}}=\frac{\sqrt{3}-1}{1+\sqrt{3}}= 2 - \sqrt3