Bài 6. Trên mặt phẳng tọa độ \(Oxy\) cho bốn điểm :
\(A(7; -3); B(8; 4); C(1; 5); D(0;-2)\).
Chứng minh rằng tứ giác \(ABCD\) là hình vuông.
\(\vec{AB} = (1; 7)\); \(\vec{DC}= (1; 7)\)
\(\vec{AB} = \vec{DC}\Rightarrow ABCD\) là hình bình hành (1)
Ta có :
Advertisements (Quảng cáo)
\(AB^2={(8 - 7)^2} + {(4 + 3)^2} = 1 + 49 = 50 \Rightarrow AB = 5\sqrt 2 \)
\(A{D^2} = {(0 - 7)^2} + {( - 2 + 3)^2} = 49 + 1 = 50 \Rightarrow AD = 5\sqrt 2 \)
Suy ra \(AB = AD\), kết hợp với (1) suy ra \(ABCD\) là hình thoi (2)
Mặt khác \(\vec{AB} = (1; 7)\); \(\vec{AD} = (-7; 1)\)
\(\overrightarrow {AB} .\overrightarrow {AD} = 1.( - 7) + 7.1 = 0 \Rightarrow \vec{AB}⊥\vec{AD}\) (3)
Kết hợp (2) và (3) suy ra \(ABCD\) là hình vuông.