Trang chủ Lớp 10 Toán lớp 10 (sách cũ) Câu 3 trang 93 SGK Hình học 10: Ôn tập Chương III...

Câu 3 trang 93 SGK Hình học 10: Ôn tập Chương III - Phương pháp tọa độ trong mặt phẳng...

Câu 3 trang 93 SGK Hình học 10: Ôn tập Chương III - Phương pháp tọa độ trong mặt phẳng. Tìm tập hợp các điểm cách đều hai đường thẳng:

Bài 3. Tìm tập hợp các điểm cách đều hai đường thẳng:

\({\Delta _1} : 5x + 3y – 3 = 0\)

\({\Delta _2}: 5x + 3y + 7 = 0\)

Gọi \(M(x; y)\) là một điểm bất kì trong mặt phẳng, ta có:

\(\eqalign{
& d(M,{\Delta _1}) = {{|5x + 3y - 3|} \over {\sqrt {{5^2} + {3^2}} }} = {{|5x + 3y - 3|} \over {\sqrt {34} }} \cr
& d(M,{\Delta _2}) = {{|5x + 3y + 7|} \over {\sqrt {{5^2} + {3^2}} }} = {{|5x + 3y + 7|} \over {\sqrt {34} }} \cr} \)

 Điểm \(M\) cách đều hai đường thẳng \({\Delta _1},{\Delta _2}\) nên: 

Advertisements (Quảng cáo)

\(\eqalign{
& {{|5x + 3y - 3|} \over {\sqrt {34} }} = {{|5x + 3y + 7|} \over {\sqrt {34} }} \cr
& \Leftrightarrow |5x + 3y - 3| = |5x + 3y + 7| \cr} \)

Ta xét hai trường hợp:

(*) \(5x + 3y – 3 = - (5x + 3y + 7) ⇔ 5x + 3y + 2 = 0\)

(**) \(5x + 3y – 3 = 5x + 3y + 7\) (vô nghiệm)

Vậy tập hợp các điểm \(M\) cách đều hai đường thẳng \({\Delta _1},{\Delta _2}\)  là đường thẳng  \(Δ: 5x + 3y + 2 = 0\)

Dễ thấy \(Δ\) song song với \({\Delta _1},{\Delta _2}\)  và hai đường thẳng \({\Delta _1},{\Delta _2}\)  nằm về hai phía đối với \(Δ\).

Bạn đang xem bài tập, chương trình học môn Toán lớp 10 (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)