Bài 30. Cho elip \((E) {{{x^2}} \over {16}} + {{{y^2}} \over 9} = 1\) : và đường thẳng \(Δ: y + 3 = 0\)
Tích các khoảng cách từ hai tiêu điểm của \((E)\) đến đường thẳng \(Δ\) bằng các giá trị nào sau đây:
A. \(16\) B. \(9\)
C. \(81\) D. \(7\)
Elip \((E) :{{{x^2}} \over {16}} + {{{y^2}} \over 9} = 1\) : có hai tiêu điểm \(F_1(-\sqrt7; 0)\) và \(F_2(\sqrt7; 0)\)
Advertisements (Quảng cáo)
Khoảng cách từ \(F_1,F_2\) đến đường thẳng \(Δ: y + 3 = 0\) là:
\(d(F_1, Δ)\) và \(d(F_2, Δ)\)
Suy ra: \(d(F_1, Δ).d(F_2, Δ)= 9\)
Vậy chọn B.