Tập xác định của hàm số \(y = \frac{{1 - \sin x}}{{\cos x}}\) là:
A. \(\mathbb{R} \setminus \left\{ { - \frac{\pi }{2} + k2\pi |k \in \mathbb{Z}} \right\}\)
B. \(\mathbb{R} \setminus \left\{ {\frac{\pi }{2} + k2\pi |k \in \mathbb{Z}} \right\}\)
C. \(\mathbb{R} \setminus \left\{ {\frac{\pi }{2} + k\pi |k \in \mathbb{Z}} \right\}\)
D. \(\mathbb{R} \setminus \left\{ {k\pi |k \in \mathbb{Z}} \right\}\)
Advertisements (Quảng cáo)
Hàm số xác định khi \(\cos x \ne 0\). Từ đó kết luận được tập xác định của hàm số.
Hàm số xác định khi \(\cos x \ne 0 \Leftrightarrow x \ne \frac{\pi }{2} + k\pi \left( {k \in \mathbb{Z}} \right)\).
Như vậy, tập xác định của hàm số là \(D = \mathbb{R} \setminus \left\{ {\frac{\pi }{2} + k\pi |k \in \mathbb{Z}} \right\}\)
Đáp án đúng là C.