Tính các giới hạn sau:
a) \(\mathop {\lim }\limits_{n \to + \infty } \frac{{{n^2} + 1}}{{2{n^2} + n + 2}};\)
b) \(\mathop {\lim }\limits_{n \to + \infty } \frac{{{2^n} + 3}}{{1 + {3^n}}}.\)
Advertisements (Quảng cáo)
Để tính giới hạn của dãy số dạng phân thức, ta chia cả tử thức và mẫu thức cho lũy thừa cao nhất của n, rồi áp dụng các quy tắc tính giới hạn.
a) \(\mathop {\lim }\limits_{n \to + \infty } \frac{{{n^2} + 1}}{{2{n^2} + n + 2}} = \mathop {\lim }\limits_{n \to + \infty } \frac{{1 + \frac{1}{{{n^2}}}}}{{2 + \frac{1}{n} + \frac{2}{{{n^2}}}}} = \frac{1}{2}\)
b) \(\mathop {\lim }\limits_{n \to + \infty } \frac{{{2^n} + 3}}{{1 + {3^n}}} = \mathop {\lim }\limits_{n \to + \infty } \frac{{{{\left( {\frac{2}{3}} \right)}^n} + {{\left( {\frac{1}{3}} \right)}^{n - 1}}}}{{{{\left( {\frac{1}{3}} \right)}^n} + 1}} = 0\)