Trang chủ Lớp 11 SBT Toán 11 - Kết nối tri thức Bài 5.17 trang 83 SBT Toán 11 – Kết nối tri thức:...

Bài 5.17 trang 83 SBT Toán 11 - Kết nối tri thức: Cho hàm số \(g\left( x \right) = \sqrt {{x^2} + 2x} - \sqrt {{x^2} - 1} - 2m\) với m...

Các quy tắc tính giới hạn hữu hạn tại một điểm cũng đúng cho giới hạn hữu hạn tại vô cực. Với c là hằng số, ta có. Lời giải bài tập, câu hỏi - Bài 5.17 trang 83 sách bài tập toán 11 - Kết nối tri thức với cuộc sống - Bài 16. Giới hạn của hàm số. Cho hàm số \(g\left( x \right) = \sqrt {{x^2} + 2x} - \sqrt {{x^2} - 1} - 2m\) với m là tham số...

Question - Câu hỏi/Đề bài

Cho hàm số \(g\left( x \right) = \sqrt {{x^2} + 2x} - \sqrt {{x^2} - 1} - 2m\) với m là tham số. Biết \(\mathop {\lim }\limits_{x \to + \infty } g\left( x \right) = 0\), tìm giá trị của m.

Method - Phương pháp giải/Hướng dẫn/Gợi ý

- Các quy tắc tính giới hạn hữu hạn tại một điểm cũng đúng cho giới hạn hữu hạn tại vô cực.

- Với c là hằng số, ta có: \(\mathop {\lim }\limits_{x \to + \infty } c = c,\mathop {\lim }\limits_{x \to - \infty } c = c\)

Advertisements (Quảng cáo)

- Với k là một số nguyên dương, ta có: \(\mathop {\lim }\limits_{x \to + \infty } \frac{1}{{{x^k}}} = 0,\mathop {\lim }\limits_{x \to - \infty } \frac{1}{{{x^k}}} = 0\)

Answer - Lời giải/Đáp án

Ta có: \(g\left( x \right) = \frac{{2x + 1}}{{\sqrt {{x^2} + 2x} + \sqrt {{x^2} - 1} }} - 2m = \frac{{2 + \frac{1}{x}}}{{\sqrt {1 + \frac{2}{x}} + \sqrt {1 - \frac{1}{{{x^2}}}} }} - 2m\)

Do đó, \(\mathop {\lim }\limits_{x \to + \infty } g\left( x \right) = \mathop {\lim }\limits_{x \to + \infty } \frac{{2 + \frac{1}{x}}}{{\sqrt {1 + \frac{2}{x}} + \sqrt {1 - \frac{1}{{{x^2}}}} }} - 2m = 1 - 2m\)

Để \(\mathop {\lim }\limits_{x \to + \infty } g\left( x \right) = 0\) thì \(1 - 2m = 0 \Leftrightarrow m = \frac{1}{2}\)

Advertisements (Quảng cáo)