Trang chủ Lớp 11 SBT Toán 11 - Kết nối tri thức Bài 5.36 trang 88 SBT Toán 11 – Kết nối tri thức:...

Bài 5.36 trang 88 SBT Toán 11 - Kết nối tri thức: Giới hạn \(\mathop {\lim }\limits_{x \to - \infty } \frac{{\sqrt {{x^2} + 2} - x}}{{x}}\) là A...

Các quy tắc tính giới hạn hữu hạn tại một điểm cũng đúng cho giới hạn hữu hạn tại vô cực. Với c là hằng số, ta có. Giải - Bài 5.36 trang 88 sách bài tập toán 11 - Kết nối tri thức với cuộc sống - Bài tập cuối chương V. Giới hạn \(\mathop {\lim }\limits_{x \to - \infty } \frac{{\sqrt {{x^2} + 2} - x}}{{|x|}}\) là...

Question - Câu hỏi/Đề bài

Giới hạn \(\mathop {\lim }\limits_{x \to - \infty } \frac{{\sqrt {{x^2} + 2} - x}}{{x}}\) là

A. \( + \infty \)

B. 0

C. - 2

D. Không tồn tại.

Method - Phương pháp giải/Hướng dẫn/Gợi ý

Advertisements (Quảng cáo)

- Các quy tắc tính giới hạn hữu hạn tại một điểm cũng đúng cho giới hạn hữu hạn tại vô cực.

- Với c là hằng số, ta có: \(\mathop {\lim }\limits_{x \to + \infty } c = c,\mathop {\lim }\limits_{x \to - \infty } c = c\)

- Với k là một số nguyên dương, ta có: \(\mathop {\lim }\limits_{x \to + \infty } \frac{1}{{{x^k}}} = 0,\mathop {\lim }\limits_{x \to - \infty } \frac{1}{{{x^k}}} = 0\).

Đối với bài tập trên, ta có thể nhóm hạng tử số mũ cao nhất ra ngoài rồi rút gọn.

Answer - Lời giải/Đáp án

Đáp án C

\(\mathop {\lim }\limits_{x \to - \infty } \frac{{\sqrt {{x^2} + 2} - x}}{{x}} = \mathop {\lim }\limits_{x \to - \infty } \frac{{|x|\sqrt {1 + \frac{2}{{{x^2}}}} - x}}{{x}} = \mathop {\lim }\limits_{x \to - \infty } \frac{{ - x\sqrt {1 + \frac{2}{{{x^2}}}} - x}}{{ x}} = \mathop {\lim }\limits_{x \to - \infty } \left( {-\sqrt {1 + \frac{2}{{{x^2}}}} - 1} \right) =- 2\)

Advertisements (Quảng cáo)