Tính đạo hàm cấp hai của các hàm số sau:
a) \(y = \ln \left| {2x - 1} \right|\);
b) \(y = \tan \left( {x + \frac{\pi }{3}} \right)\).
Áp dụng quy tắc tính đạo hàm \({\left( {\ln \left| u \right|} \right)^\prime } = \frac{{u’}}{u}\,\)
Advertisements (Quảng cáo)
\({\left( {\tan u} \right)^\prime } = \frac{{u’}}{{{\rm{co}}{{\rm{s}}^2}u}}\)
a) \(y’ = \frac{2}{{2x - 1}} \Rightarrow y” = - \frac{4}{{{{(2x - 1)}^2}}}\)
\({\rm{b)\;}}y’ = {\rm{tan}}{\left( {x + \frac{\pi }{3}} \right)^{\rm{‘}}} = \frac{1}{{{\rm{co}}{{\rm{s}}^2}\left( {x + \frac{\pi }{3}} \right)}} = 1 + {\rm{ta}}{{\rm{n}}^2}\left( {x + \frac{\pi }{3}} \right)\)
\(y” = 2{\rm{tan}}\left( {x + \frac{\pi }{3}} \right){\left( {{\rm{tan}}\left( {x + \frac{\pi }{3}} \right)} \right)^{\rm{‘}}} = \frac{{2{\rm{tan}}\left( {x + \frac{\pi }{3}} \right)}}{{{\rm{co}}{{\rm{s}}^2}\left( {x + \frac{\pi }{3}} \right)}}\)