Trang chủ Lớp 11 SBT Toán 11 Nâng cao (sách cũ) Câu 21 trang 53 Sách bài tập Hình học 11 nâng cao:...

Câu 21 trang 53 Sách bài tập Hình học 11 nâng cao: Một mặt phẳng (P) thay đổi luôn chứa MN, cắt các cạnh CD và BD lần...

Một mặt phẳng (P) thay đổi luôn chứa MN, cắt các cạnh CD và BD lần lượt tại E và F.. Câu 21 trang 53 Sách bài tập Hình học 11 nâng cao. Bài 1: Đại cương về đường thẳng và mặt phẳng

21. Trang 53 Sách bài tập Hình học 11 nâng cao.

Cho tứ diện ABCD. Hai điểm M, N lần lượt nằm trên hai cạnh AB và AC sao cho \({{AM} \over {AB}} \ne {{AN} \over {AC}}.\) Một mặt phẳng (P) thay đổi luôn chứa MN, cắt các cạnh CD và BD lần lượt tại E và F.

a) Chứng minh rằng đường thẳng EF luôn đi qua một điểm cố định.

b) Tìm tập hợp giao điểm I của ME và NE.

c) TÌm tập hợp giao điểm J của MF và NE.

a) Gọi K là giao điểm của MN và BC thì K cố định và K là một điểm chung của mp(P) với mp(BCD). Mặt khác, \(mp\left( P \right) \cap mp\left( {BCD} \right) = EF\). Vậy K phải thuộc EF, nên EF luôn qua điểm cố định K.

Advertisements (Quảng cáo)

b) Ta có I là giao điểm của ME và NF. Vậy \(I \in ME,\,ME \subset \left( {MCD} \right) \Rightarrow I \in \left( {MCD} \right)\) và \(I \in NF,\,NF \subset \left( {NBD} \right) \Rightarrow I \in \left( {NBD} \right).\)

Từ đó, suy ra I thuộc giao tuyến OD của (MCD) và (NBD).

Khi E chạy đến C thì F chạy đến B và I chạy đến O.

Khi E chạy đến D thì F chạy đến D và I cũng chạy đến D.

Vậy tập hợp các điểm I là đoạn thẳng OD.

c) J là giao điểm của MF và NE. Từ đó dễ thấy J thuộc hai mặt phẳng (ABD) và (ACD). Vậy J phải thuộc giao tuyến AD của hai mặt phẳng (ABD) và (ACD).

Lí luận tương tự như câu a) ta thấy tập hợp các điểm J là đường thẳng AD trừ các điểm trong đoạn AD.

Bạn đang xem bài tập, chương trình học môn SBT Toán 11 Nâng cao (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)