Trang chủ Lớp 11 SBT Toán 11 Nâng cao (sách cũ) Câu 3.2 trang 85 SBT Đại số nâng cao lớp 11 Bằng...

Câu 3.2 trang 85 SBT Đại số nâng cao lớp 11 Bằng phương pháp quy nạp, ta sẽ chứng minh...

Câu 3.2 trang 85 sách bài tập Đại số và Giải tích 11 Nâng cao. \(1 + \cos x = 2{\cos ^2}{x \over 2} = {{\sin {{\left( {1 + 1} \right)x} \over 2}\cos {{1.x} \over 2}} \over {\sin {x \over 2}}}\) . Bài 1: Phương pháp quy nạp toán học

Cho số thực \(x \ne k2\pi .\) Chứng minh rằng với mọi số nguyên dương n, ta luôn có

\(1 + \cos x + \cos 2x + ... + \cos nx = {{\sin {{\left( {n + 1} \right)x} \over 2}\cos {{nx} \over 2}} \over {\sin {x \over 2}}}\)

Bằng phương pháp quy nạp, ta sẽ chứng minh

\(1 + \cos x + \cos 2x + ... + \cos nx = {{\sin {{\left( {n + 1} \right)x} \over 2}\cos {{nx} \over 2}} \over {\sin {x \over 2}}}\)    (1)     với mọi \(n \in N^*.\)

Với \(n = 1,\) vì \(x \ne k2\pi \) (theo giả thiết) nên

\(1 + \cos x = 2{\cos ^2}{x \over 2} = {{\sin {{\left( {1 + 1} \right)x} \over 2}\cos {{1.x} \over 2}} \over {\sin {x \over 2}}}\)                    (2)

Advertisements (Quảng cáo)

Như vậy (1) đúng khi \(n = 1\)

Giả sử đã có (1) đúng khi \(n = k,k \in N^*.\) Khi đó , ta có

\(\eqalign{
& 1 + \cos x + \cos 2x + ... + \cos kx + \cos (k + 1)x \cr&= {{\sin {{\left( {1 + 1} \right)x} \over 2}\cos {{kx} \over 2}} \over {\sin {x \over 2}}} + \cos (k + 1)x \cr
& = {{\sin {{\left( {k + 1} \right)x} \over 2}\cos {{kx} \over 2} + \cos (k + 1)x.\sin {x \over 2}} \over {\sin {x \over 2}}} \cr
& \cr
& = {{\sin {{\left( {k + 1} \right)x} \over 2}\cos {{kx} \over 2} - 2{{\sin }^2}{{(k + 1)x} \over 2}.\sin {x \over 2} + \sin {x \over 2}} \over {\sin {x \over 2}}} \cr
& = {{\sin {{\left( {k + 1} \right)x} \over 2}\left( {\cos {{kx} \over 2} - 2\sin {{(k + 1)x} \over 2}.\sin {x \over 2}} \right) + \sin {x \over 2}} \over {\sin {x \over 2}}} \cr
& = {{\sin {{\left( {k + 1} \right)x} \over 2}\left( {\cos {{kx} \over 2} + \cos {{(k + 2)x} \over 2} - \cos {{kx} \over 2}} \right) + \sin {x \over 2}} \over {\sin {x \over 2}}} \cr
& = {{{1 \over 2}\left( {\sin {{\left( {2k + 3} \right)x} \over 2} - \sin {x \over 2}} \right) + \sin {x \over 2}} \over {\sin {x \over 2}}} \cr
& = {{\sin {{\left( {k + 2} \right)x} \over 2}\cos {{(k + 1)x} \over 2}} \over {\sin {x \over 2}}} \cr} \)

Nghĩa là ta cũng có (1) đúng khi \(n = k + 1\).

Từ các chứng minh trên suy ra (1) đúng với mọi \(n \in N^*.\)

Bạn đang xem bài tập, chương trình học môn SBT Toán 11 Nâng cao (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)