Trang chủ Lớp 11 SBT Toán 11 Nâng cao (sách cũ) Câu 31 trang 120 SBT Toán hình 11 nâng cao: Chứng minh...

Câu 31 trang 120 SBT Toán hình 11 nâng cao: Chứng minh rằng nếu các cặp cạnh đối diện của tứ diện ABCD vuông góc với nhau từng đôi một thì trong bốn mặt của tứ...

Câu 31 trang 120 Sách bài tập Hình học 11 Nâng cao. Trả lời. Bài 2 3 4: Hai đường thẳng vuông góc. Đường thẳng vuông góc với mặt phẳng. Hai mặt phẳng vuông góc

Chứng minh rằng nếu các cặp cạnh đối diện của tứ diện ABCD vuông góc với nhau từng đôi một thì trong bốn mặt của tứ diện có ít nhất một mặt là tam giác nhọn (cả ba góc của nó đều nhọn).

Giả sử ABCD là tứ diện có tính chất \(AB \bot C{\rm{D}},AC \bot B{\rm{D}},A{\rm{D}} \bot BC\).

Ta có:

\(A{B^2} + C{{\rm{D}}^2} = A{C^2} + B{{\rm{D}}^2} = B{C^2} + A{{\rm{D}}^2}\).

Advertisements (Quảng cáo)

Từ đó, ta có

\(\eqalign{  & A{B^2} + A{C^2} - B{C^2}  \cr  &  = A{C^2} + A{{\rm{D}}^2} - C{{\rm{D}}^2}  \cr  &  = A{{\rm{D}}^2} + A{B^2} - B{{\rm{D}}^2} \cr} \)

Hệ thức này khẳng định các góc \(\widehat {BAC},\widehat {CA{\rm{D}}},\widehat {DAB}\) hoặc cùng nhọn, cùng vuông hoặc cùng tù.

Tương tự như trên, ta chứng minh được góc tại bất cứ đỉnh nào của tứ diện ABCD cũng có tính chất đó. Do tính chất tổng các góc trong của một tam giác bằng 1800 nên tồn tại nhiều nhất một đỉnh của tứ diện mà tại đó ba góc cùng vuông hay cùng tù. Khi ấy mặt đối diện với đỉnh đó của tứ diện ABCD có cả ba góc đều nhọn.

Vậy nên \(AB \bot C{\rm{D}},AC \bot B{\rm{D}}\) và \(A{\rm{D}} \bot BC\) thì trong bốn mặt của tứ diện ABCD có ít nhất một mặt là tam giác nhọn (cả ba góc của nó nhỏ hơn 90°).

Bạn đang xem bài tập, chương trình học môn SBT Toán 11 Nâng cao (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)