Trang chủ Lớp 11 SBT Toán 11 Nâng cao Câu 45 trang 122 Sách BT hình 11 nâng cao: Bài 2...

Câu 45 trang 122 Sách BT hình 11 nâng cao: Bài 2 3 4: Hai đường thẳng vuông góc. Đường thẳng vuông góc với mặt phẳng. Hai mặt phẳng vuông góc...

Chia sẻ
Câu 45 trang 122 Sách bài tập Hình học 11 Nâng cao. b) \(HK \bot mp\left( {ABC} \right)\). Bài 2 3 4: Hai đường thẳng vuông góc. Đường thẳng vuông góc với mặt phẳng. Hai mặt phẳng vuông góc

Cho tứ diện ABCD có cạnh AD vuông góc với mp(DBC). Gọi AE, BF là hai đường cao của tam giác ABC; H và K lần lượt là trực tâm của tam giác ABC và tam giác DBC. Chứng minh rằng:

a) \(mp\left( {A{\rm{D}}E} \right) \bot mp\left( {ABC} \right)\) và \(mp\left( {BFK} \right) \bot mp\left( {ABC} \right)\).

b) \(HK \bot mp\left( {ABC} \right)\)

 

a) Vì \(A{\rm{D}} \bot \left( {DBC} \right)\) nên \(A{\rm{D}} \bot BC\).

Quảng cáo

Mặt khác \(A{\rm{E}} \bot BC\). Vậy \(BC \bot \left( {A{\rm{D}}E} \right)\), từ đó ta có \(\left( {ABC} \right) \bot \left( {A{\rm{D}}E} \right)\).

Vì K là trực tâm tam giác DBC nên \(BK \bot AC\). Theo giả thiết \(A{\rm{D}} \bot \left( {DBC} \right)\), vậy \(BK \bot AC\) (định lí ba đường vuông góc). Kết hợp với \(BF \bot AC\) ta có \(AC \bot \left( {BFK} \right)\), từ đó \(mp\left( {ABC} \right) \bot mp\left( {BFK} \right)\).

b) Từ câu a), ta có

\(\eqalign{  & mp\left( {BFK} \right) \bot mp\left( {ABC} \right)  \cr  & mp\left( {A{\rm{D}}E} \right) \bot mp\left( {ABC} \right)  \cr  & HK = mp\left( {A{\rm{D}}E} \right) \cap mp\left( {BFK} \right) \cr} \)

Vậy \(HK \bot mp\left( {ABC} \right)\).



Chia sẻ