Trang chủ Lớp 11 SBT Toán 11 Nâng cao Câu 55 trang 14 Sách BT Hình lớp 11 NC Chứng minh...

Câu 55 trang 14 Sách BT Hình lớp 11 NC Chứng minh rằng mỗi bộ ba điểm sau đây thẳng...

Chứng minh rằng mỗi bộ ba điểm sau đây thẳng hàng.. Câu 55 trang 14 Sách bài tập Hình Học 11 Nâng cao – Bài 6 7: Phép vị tự. Phép đồng dạng

55. Trang 14 Sách bài tập Hình Học 11 Nâng cao

Cho ba đường tròn \(\left( {{I_1};{R_1}} \right),\left( {{I_2};{R_2}} \right),\left( {{I_3};{R_3}} \right)\) không đồng tâm và không bằng nhau. Gọi \(O_3^ + \) và \(O_3^ – \) lần lượt là tâm vị tự ngoài và tâm vị tự trong của hai đường tròn \(\left( {{I_1};{R_1}} \right)\) và \(\left( {{I_2};{R_2}} \right)\)  \(O_1^ + \) và \(O_1^ – \) lần lượt là tâm vị tự ngoài và tâm vị tự trong của hai đường tròn \(\left( {{I_2};{R_2}} \right)\) và \(\left( {{I_3};{R_3}} \right)\); \(O_2^ + \) và \(O_2^ – \) lần lượt là tâm vị tự ngoài và tâm vị tự trong của hai đường tròn \(\left( {{I_3};{R_3}} \right)\) và \(\left( {{I_1};{R_1}} \right)\). Chứng minh rằng mỗi bộ ba điểm sau đây thẳng hàng:

Quảng cáo

\(O_1^ + ,O_2^ + ,O_3^ + \); \(O_1^ + ,O_2^ – ,O_3^ – \); \(O_1^ – ,O_2^ + ,O_3^ – \) và \(O_1^ – ,O_2^ – ,O_3^ + \).

Phép vị tự tâm \(O_3^ + \) tỉ số \({{{R_2}} \over {{R_1}}}\) biến đường tròn \(\left( {{I_1};{R_1}} \right)\) thành đường tròn \(\left( {{I_2};{R_2}} \right)\); phép vị tự tâm \(O_1^ + \) tỉ số \({{{R_3}} \over {{R_2}}}\) biến đường tròn \(\left( {{I_2};{R_2}} \right)\) thành đường tròn \(\left( {{I_3};{R_3}} \right)\). Theo câu b) bài 54, phép hợp thành của hai phép vị tự đó là phép vị tự, có tỉ số:

\({{{R_2}} \over {{R_1}}}.{{{R_3}} \over {{R_2}}} = {{{R_3}} \over {{R_1}}}\)

và biến đường tròn \(\left( {{I_1};{R_1}} \right)\) thành đường tròn \(\left( {{I_3};{R_3}} \right)\). Vậy tâm của phép vị tự hợp thành đó chính là điểm \(O_2^ + \). Suy ra ba điểm \(O_1^ + ,O_2^ + ,O_3^ + \) thẳng hàng. Chứng minh tương tự cho các bộ ba điểm còn lại.

Quảng cáo