Trang chủ Lớp 11 SBT Toán 11 Nâng cao Câu 71 trang 128 Sách bài tập Hình học 11 Nâng cao...

Câu 71 trang 128 Sách bài tập Hình học 11 Nâng cao :Xác định giao điểm P và Q của mặt phẳng (CMN) với các đường thẳng B1C1 và DB1...

Chia sẻ
Câu 71 trang 128 Sách bài tập Hình học 11 Nâng cao. và. Ôn tập chương III. Vectơ trong không gian. Quan hệ vuông góc

Cho M và N lần lượt là trung điểm của các cạnh AB, A­1D1 của hình hộp ABCD.A1B1C1D1.

a) Xác định giao điểm P và Q của mặt phẳng (CMN) với các đường thẳng B1C1 và DB1.

b) Hãy biểu thị các vectơ \(\overrightarrow {AP} ,\overrightarrow {AQ} \) qua các vectơ \(\overrightarrow a ,\overrightarrow b ,\overrightarrow c \)  trong đó \(\overrightarrow b  = \overrightarrow {AB} ,\overrightarrow c  = \overrightarrow {A{\rm{D}}} ,\overrightarrow a  = \overrightarrow {A{A_1}} \).

 

a) Đặt \(\overrightarrow {A{A_1}}  = \overrightarrow a ,\overrightarrow {AB}  = \overrightarrow b ,\overrightarrow {AD}  = \overrightarrow c \).

P là giao điểm của mp(CMN) với đường thẳng B1C1 khi và chỉ khi C, M, N, P thuộc một mặt phẳng và P thuộc đường thẳng B1C1.

Ta có các điểm M, N, C, P thuộc một mặt phẳng nên tồn tại các số x, y, z sao cho:

\(x + y + z = 1\,\,\,\,\,\,\,\,\,\,\,\left( * \right)\)

và \(\overrightarrow {AP}  = x\overrightarrow {AM}  + y\overrightarrow {AN}  + z\overrightarrow {AC.} \)

Ta có:

\(\eqalign{  & \overrightarrow {AP}  = x.{{\overrightarrow b } \over 2} + y\left( {\overrightarrow a  + {{\overrightarrow c } \over 2}} \right) + z\left( {\overrightarrow b  + \overrightarrow c } \right)  \cr  &  = y\overrightarrow a  + \left( {{x \over 2} + z} \right)\overrightarrow b  + \left( {{y \over 2} + z} \right)\overrightarrow c \,\,\,\,\,\,\,\,\,\,\,\,\,\left( 1 \right) \cr} \)

Vì P thuộc đường thẳng B1C1 nên \(\overrightarrow {{B_1}P}  = t\overrightarrow {{B_1}{C_1}} \), từ đó \(\overrightarrow {AP}  = \overrightarrow b  + \overrightarrow a  +t \overrightarrow c \,\,\,\,\,\,\,\,\,\,\,\,\left( 2 \right)\)

Từ (1), (2) và do \(\overrightarrow a ,\overrightarrow b ,\overrightarrow c \) không đồng phẳng nên

\(\left\{ \matrix{  y = 1 \hfill \cr  {x \over 2} + z = 1 \hfill \cr  {y \over 2} + z = t \hfill \cr}  \right.\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( {**} \right)\)

Kết hợp (*) và (**), ta có:

\(\eqalign{  & \left\{ \matrix{  y = 1 \hfill \cr  {x \over 2} + z = 1 \hfill \cr  {y \over 2} + z = t \hfill \cr  x + y + z = 1 \hfill \cr}  \right.  \cr  &  \Rightarrow z =  – x \Rightarrow {x \over 2} – x = 1 \Leftrightarrow x =  – 2  \cr  &  \Rightarrow z = 2,t = {5 \over 2} \cr} \)

Quảng cáo

Vậy giao điểm của mp(CMN) với đường thẳng B1C1 là điểm P xác định bời

\(\overrightarrow {{B_1}P}  = {5 \over 2}\overrightarrow {{B_1}{C_1}} \) .

Tương tự như trên, nếu gọi Q là giao điểm của mp(CMN) với đường thẳng B1D thì ta có \(x + y + z = 1\).

\(\eqalign{  & \overrightarrow {AQ}  = x\overrightarrow {AM}  + y\overrightarrow {AN}  + z\overrightarrow {AC}   \cr  &  = y\overrightarrow a  + \left( {{x \over 2} + z} \right)\overrightarrow b  + \left( {{y \over 2} + z} \right)\overrightarrow c  \cr} \)

Mặt khác

\(\overrightarrow {AQ}  = \overrightarrow b  + \overrightarrow a  + t\overrightarrow {{B_1}D}\)

\(  = \overrightarrow a  + \overrightarrow b  + t\left( { – \overrightarrow a  – \overrightarrow b  + \overrightarrow c } \right) \)

\(= \left( {1 – t} \right)\overrightarrow a  + \left( {1 – t} \right)\overrightarrow b  + t\overrightarrow c\)

Ta có hệ phương trình sau:

\(\eqalign{  & \left\{ \matrix{  y = 1 – t \hfill \cr  {x \over 2} + z = 1 – t \hfill \cr  {y \over 2} + z = t \hfill \cr  x + y + z = 1 \hfill \cr}  \right. \Leftrightarrow \left\{ \matrix{  {x \over 2} – y + z = 0 \hfill \cr  x + y + z = 1 \hfill \cr  {x \over 2} + {y \over 2} + 2{\rm{z}} = 1 \hfill \cr}  \right.  \cr  &  \Rightarrow 1 – z = 2 – 4{\rm{z}} \Leftrightarrow z = {1 \over 3}  \cr  &  \Rightarrow x = {2 \over 9},y = {4 \over 9},t = {5 \over 9}. \cr} \)

Vậy giao điểm Q của đường thẳng B1D với mp(CMN) được xác định bởi

\(\overrightarrow {{B_1}Q}  = {5 \over 9}\overrightarrow {{B_1}D} \)

b) Từ kết quả của câu a), ta có :

\(\eqalign{  & \overrightarrow {AP}  = \overrightarrow a  + \overrightarrow b  + {5 \over 2}\overrightarrow c   \cr  & \overrightarrow {AQ}  = {4 \over 9}\overrightarrow a  + {4 \over 9}\overrightarrow b  + {5 \over 9}\overrightarrow c  \cr} \).



Chia sẻ