Trang chủ Lớp 11 SBT Toán 11 Nâng cao Câu 81 trang 129 SBT Toán hình 11 nâng cao: Tương tự...

Câu 81 trang 129 SBT Toán hình 11 nâng cao: Tương tự như trên, các tam giác MBN, ABN vuông tại B....

Chia sẻ
Câu 81 trang 129 Sách bài tập Hình học 11 Nâng cao. Ôn tập chương III. Vectơ trong không gian. Quan hệ vuông góc

Cho hai nửa mặt phẳng (P) và (Q) vuông góc với nhau theo giao tuyến ∆. Trên ∆ lấy hai điểm A, B cố định với \(AB = a\sqrt 2 \) (a là độ dài cho trước). Trên nửa đường thẳng Ax vuông góc với ∆ và ở trong (P) lấy điểm M khác A. Đặt AM = m. Trên nửa đường thẳng By vuông góc với ∆ và trong (Q) lấy điểm N sao cho \(BN = {{{a^2}} \over m}\).

a) Chứng minh các mặt của tứ diện ABMN là các tam giác vuông.

b) Với giá trị nào của m thì MN có độ dài bé nhất? Tính giá trị đó.

c) Chứng minh rằng chân mỗi đường cao của tứ diện đó xuất phát từ A và B nằm trên đường tròn cố định khi M thay đổi.

 

a) Vì \(\left( P \right) \bot \left( Q \right),\left( P \right) \cap \left( Q \right) = AB,\)

\(M \in \left( P \right),MA \bot AB\) nên \(MA \bot \left( Q \right)\). Do đó MAB, MAN là các tam giác vuông tại A.

Tương tự như trên, các tam giác MBN, ABN vuông tại B.

b) Vì

Quảng cáo

\(\eqalign{  & M{N^2} = M{A^2} + A{B^2} + B{N^2}  \cr  &  = {m^2} + 2{a^2} + {{{a^4}} \over {{m^2}}} \cr} \)

Từ đó MN có độ dài bé nhất khi và chỉ khi \({m^2} + {{{a^4}} \over {{m^2}}}\) bé nhất.

Mặt khác \({m^2}.{{{a^4}} \over {{m^2}}} = {a^4}\).

Vậy MN có độ dài bé nhất khi và chỉ khi:

\({m^2} = {{{a^4}} \over {{m^2}}} \Leftrightarrow m = a\).

c) Vì \(\left( {MAB} \right) \bot \left( {NMB} \right)\) nên khi kẻ AA1 vuông góc với BM tại A1 thì \(A{A_1} \bot \left( {BMN} \right)\), tức A­1 là chân đường cao của tứ diện ABMN kẻ từ đỉnh A.

Như vậy A1 thuộc (P) và \(\widehat {B{A_1}A} = {90^0}\), từ đó A1 thuộc đường tròn đường kính AB trong (P). Đường tròn này cố định.

Tương tự như trên, chân đường cao Bkẻ từ đỉnh B của tứ diện ABMN cũng thuộc đường tròn đường kính AB nằm trong mặt phẳng (Q).



Chia sẻ