Trang chủ Lớp 11 SGK Toán 11 - Kết nối tri thức Giải mục 1 trang 95 Toán 11 tập 2 – Kết nối...

Giải mục 1 trang 95 Toán 11 tập 2 - Kết nối tri thức: Gọi \(g\left( x \right)\) có đạo hàm của hàm số \(y = \sin \left( {2x + \frac{\pi...

Trả lời HĐ 1 , LT 1 mục 1 trang 95 SGK Toán 11 tập 2 - Kết nối tri thức Bài 33. Đạo hàm cấp hai. Gọi (gleft( x right)) có đạo hàm của hàm số (y = sin left( {2x + frac{pi }{4}} right). ) Tìm (gleft( x right))...

Hoạt động 1

a) Gọi \(g\left( x \right)\) có đạo hàm của hàm số \(y = \sin \left( {2x + \frac{\pi }{4}} \right).\) Tìm \(g\left( x \right)\).

b) Tính đạo hàm của hàm số \(y = g\left( x \right)\).

Method - Phương pháp giải/Hướng dẫn/Gợi ý

Sử dụng công thức \(\left( {\sin u} \right)’ = u’.\cos u;\left( {\cos u} \right)’ = - u’.\sin u\)

Answer - Lời giải/Đáp án

a) \(g’\left( x \right) = y’ = {\left( {2x + \frac{\pi }{4}} \right)^,}.\cos \left( {2x + \frac{\pi }{4}} \right) = 2\cos \left( {2x + \frac{\pi }{4}} \right)\)

b) \(g’\left( x \right) = - 2{\left( {2x + \frac{\pi }{4}} \right)^,}.\sin \left( {2x + \frac{\pi }{4}} \right) = - 4\sin \left( {2x + \frac{\pi }{4}} \right)\)


Luyện tập 1

Advertisements (Quảng cáo)

Tính đạo hàm cấp hai của các hàm số sau:

a) \(y = x{e^{2x}};\)

b) \(y = \ln \left( {2x + 3} \right).\)

Method - Phương pháp giải/Hướng dẫn/Gợi ý

Giả sử hàm số \(y = f\left( x \right)\) có đạo hàm tại mỗi điểm \(x \in \left( {a;b} \right).\) Nếu hàm số \(y’ = f’\left( x \right)\) lại có đạo hàm tại x thì ta gọi đạo hàm của \(y’\) là đạo hàm cấp hai của hàm số \(y = f\left( x \right)\) tại x, kí hiệu là \(y”\) hoặc \(f”\left( x \right).\)

Answer - Lời giải/Đáp án

a) \(y’ = {e^{2x}} + 2x{e^{2x}} \Rightarrow y” = 2{e^{2x}} + 2\left( {{e^{2x}} + 2x{e^{2x}}} \right) = 4{e^{2x}} + 4x{e^{2x}}\)

b) \(y’ = \frac{{{{\left( {2x + 3} \right)}^,}}}{{2x + 3}} = \frac{2}{{2x + 3}} \Rightarrow y” = \frac{{ - 2.{{\left( {2x + 3} \right)}^,}}}{{{{\left( {2x + 3} \right)}^2}}} = \frac{{ - 4}}{{{{\left( {2x + 3} \right)}^2}}}\)

Advertisements (Quảng cáo)