Cho điểm \(M\left( {a;b;c} \right)\). \({M_1}, {M_2}, {M_3}\) lần lượt là hình chiếu của điểm \(M\) trên các mặt phẳng toạ độ \(\left( {Oxy} \right), \left( {Oyz} \right). Trả lời - Bài 12 trang 78 sách bài tập toán 12 - Chân trời sáng tạo - Bài tập cuối chương 2. Cho điểm \(A\left( {3; - 1;1} \right)\). Hình chiếu vuông góc của điểm \(A\) trên mặt phẳng \(\left( {Oyz} \right)\) là điểm A. \(M\left( {3;0;0} \right)\). B. \(N\left( {0; - 1;1} \right)\). C. \(P\left( {0; - 1;0} \right)\). D...
Cho điểm \(A\left( {3; - 1;1} \right)\). Hình chiếu vuông góc của điểm \(A\) trên mặt phẳng \(\left( {Oyz} \right)\) là điểm
A. \(M\left( {3;0;0} \right)\).
B. \(N\left( {0; - 1;1} \right)\).
C. \(P\left( {0; - 1;0} \right)\).
D. \(Q\left( {0;0;1} \right)\).
Advertisements (Quảng cáo)
Cho điểm \(M\left( {a;b;c} \right)\). \({M_1},{M_2},{M_3}\) lần lượt là hình chiếu của điểm \(M\) trên các mặt phẳng toạ độ \(\left( {Oxy} \right),\left( {Oyz} \right),\)\(\left( {Ozx} \right)\) thì \({M_1}\left( {a;b;0} \right),{M_2}\left( {0;b;c} \right),{M_3}\left( {a;0;c} \right)\).
Gọi \(A’\) là hình chiếu vuông góc của điểm \(A\) trên mặt phẳng \(\left( {Oyz} \right)\) thì \(A’\left( {0; - 1;1} \right) \equiv N\).
Chọn B.