Cho hàm số \(y = \left( {m - 1} \right){x^3} + 2\left( {m + 1} \right){x^2} - x + m - 1\) (\(m\) là tham số).
a) Khảo sát và vẽ đồ thị của hàm số khi \(m = - 1\).
b) Tìm giá trị của \(m\) để tâm đối xứng của đồ thị hàm số có hoành độ \({x_0} = - 2\).
Sơ đồ khảo sát hàm số:
Bước 1. Tìm tập xác định của hàm số.
Bước 2. Xét sự biến thiên của hàm số
‒ Tìm đạo hàm \(y’\), xét dấu \(y’\), xác định khoảng đơn điệu, cực trị (nếu có) của hàm số.
‒ Tìm giới hạn tại vô cực, giới hạn vô cực của hàm số và tìm các đường tiệm cận của đồ thị hàm số (nếu có).
‒ Lập bảng biến thiên của hàm số.
Bước 3. Vẽ đồ thị hàm số
‒ Xác định các điểm cực trị (nếu có), giao điểm của đồ thị với các trục toạ độ (nếu có và dễ tìm),…
‒ Vẽ các đường tiệm cận của đồ thị hàm số (nếu có).
‒ Vẽ đồ thị hàm số.
a) Với \(m = - 1\), hàm số có dạng: \(y = \left( { - 1 - 1} \right){x^3} + 2\left( { - 1 + 1} \right){x^2} - x - 1 - 1\) hay \(y = - 2{x^3} - x - 2\).
1. Tập xác định: \(\mathbb{R}\).
Advertisements (Quảng cáo)
2. Sự biến thiên:
• Chiều biến thiên:
Đạo hàm \(y’ = - 6{{\rm{x}}^2} - 1
Do \(y’
Hàm số đã cho không có cực trị:
• Các giới hạn tại vô cực:
\(\mathop {\lim }\limits_{x \to - \infty } y = \mathop {\lim }\limits_{x \to - \infty } {x^3}\left( { - 2 - \frac{1}{{{x^2}}} - \frac{2}{{{x^3}}}} \right) = + \infty ;\mathop {\lim }\limits_{x \to + \infty } y = \mathop {\lim }\limits_{x \to + \infty } {x^3}\left( { - 2 - \frac{1}{{{x^2}}} - \frac{2}{{{x^3}}}} \right) = - \infty \).
• Bảng biến thiên:
3. Đồ thị
Đồ thị hàm số đi qua điểm \(\left( { - 1;1} \right),\left( {0; - 2} \right),\left( {1; - 5} \right)\).
Vậy đồ thị hàm số được biểu diễn như hình vẽ.
Đồ thị của hàm số có tâm đối xứng là điểm \(I\left( { - 2;0} \right)\).
b) \(y’=3\left( m-1 \right){{x}^{2}}+4\left( m+1 \right)x-1;y”=6\left( m-1 \right)x+4\left( m+1 \right)\)
\(y”=0\) \( \Leftrightarrow \left\{ \begin{array}{l}m - 1 \ne 0\\x = \frac{{ - 2\left( {m + 1} \right)}}{{3\left( {m - 1} \right)}}\end{array} \right.\)
Tâm đối xứng của đồ thị hàm số có hoành độ \(x = - 2\)
\( \Leftrightarrow \left\{ \begin{array}{l}m - 1 \ne 0\\x = \frac{{ - 2\left( {m + 1} \right)}}{{3\left( {m - 1} \right)}} = - 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m \ne 1\\m = 2\end{array} \right. \Leftrightarrow m = 2\).