‒ Hoành độ tâm đối xứng là nghiệm của phương trình $y”=0$. Hướng dẫn giải - Bài 3 trang 31 sách bài tập toán 12 - Chân trời sáng tạo - Bài 4. Khảo sát và vẽ đồ thị một số hàm cơ bản. Cho hàm số \(y = 2{x^3} + 6{x^2} - x + 2\). Viết phương trình tiếp tuyến của đồ thị hàm số tại tâm đối xứng của nó...
Cho hàm số \(y = 2{x^3} + 6{x^2} - x + 2\). Viết phương trình tiếp tuyến của đồ thị hàm số tại tâm đối xứng của nó.
‒ Hoành độ tâm đối xứng là nghiệm của phương trình $y”=0$.
‒ Phương trình tiếp tuyến của đồ thị hàm số \(y = f\left( x \right)\) tại điểm \({M_0}\left( {{x_0};{y_0}} \right)\):
\(y = f’\left( {{x_0}} \right)\left( {x - {x_0}} \right) + {y_0}\)
Advertisements (Quảng cáo)
\(y’=6{{x}^{2}}+12x-1;y”=12x+12;y”=0\Leftrightarrow x=-1\)
Tâm đối xứng \(I\) của đồ thị hàm số có toạ độ \(\left( { - 1;7} \right)\).
Ta có \(y’\left( { - 1} \right) = - 7\).
Phương trình tiếp tuyến của đồ thị hàm số tại \(I\left( { - 1;7} \right)\):
\(y = - 7\left( {x + 1} \right) + 7\) hay \(y = - 7x\).