Trang chủ Lớp 12 SBT Toán 12 Nâng cao (sách cũ) Bài 45 trang 63 Sách bài tập Toán Hình 12 NC: Cho...

Bài 45 trang 63 Sách bài tập Toán Hình 12 NC: Cho tứ diện đều ABCD...

Cho tứ diện đều ABCD. Bài 45 trang 63 Sách bài tập Hình học lớp 12 Nâng cao - Ôn tập chương II - Mặt cầu mặt trụ mặt nón

Cho tứ diện đều ABCD, AA1 là một dường cao của tứ diện. Gọi I là trung điểm của AA1. Mặt phẳng (BCI) chia tứ diện đã cho thành hai tứ diện. Tính tỉ số hai bán kính của hai mặt cầu ngoại tiếp hai tứ diện đó.

Gọi N là trung điểm của BCJ là giao điểm của NI với AD, khi đó mp(BCI) chia tứ diện đã cho thành hai tứ diện  BCDJABCJ.

Dễ thấy AJ=14AD.

AA1mp(BCD) nên mọi điểm thuộc AA1 cách đều B,C, D. Khi đó, tâm O1 của mặt cầu ngoại tiếp tứ diện BCDJ là giao điểm của AA1 với đường trung trực của JD( xét trong mp(AA1D)).

Tương tự như trên, tâm O2 của mặt cầu ngoại tiếp tứ diện ABCJ là giao của với đường trung trực của AJ ( xét trong mp(ADD1))(DD1 là đường cao kẻ từ đỉnh D của tứ diện ABCD).

Gọi EF lần lượt là trung điểm của DJAJ. Xét tứ giác nội tiếp O1A1DE (hình 89b), ta có

AE.AD=AO1.AA1AO1=AE.ADAA1.

Mặt khác

AA1=a63,AE=a4+3a8=5a8.

Từ đó

AO1=5a.a8.a63=5a616.

Advertisements (Quảng cáo)

Và do đó A1O1=A1AAO1

                           =a635a616=a648

Vậy bán kính R1 của mặt cầu ngoại tiếp tứ diện BCDJ  là

R21=O1D2=A1O21+A1D2=6a2482+3a29=a248.8+a23=129.a248.8R1=a12986.

Từ giác O2D1FA nội tiếp đường tròn nên

DD1.DO2=DF.DADO2=DF.DADD1.

Mặt khác

DF=3a4+a8=7a8,DA=a,DD1=a63, từ đó

DO2=7a8.aa63=21a68.6=7a616.

Suy ra D1O2=7a616a63=5a648 và do đó, bán kính R2 của mặt cầu ngoại tiếp tứ diện ABCJ

R22=O2A22=O2D21+D1A2

       =25a2.6482+(a33)2

       =25a248.8+a23=153a248.8,

Từ đó R2=a15386. Vậy R1R2=a12986:a15386=4351.

Bạn đang xem bài tập, chương trình học môn SBT Toán 12 Nâng cao (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)