Trong các tam giác vuông mà cạnh huyền có độ dài bằng 10cm, hãy xác định tam giác có diện tích lớn nhất.
Giải
Gọi x, y là độ dài hai cạnh góc vuông của tam giác vuông có cạnh huyền là 10 cm, 0 < x < 10 và 0 < y < 10.
Diện tích tam giác là \(S = {1 \over 2}xy(c{m^2})\)
Ta có \({x^2} + {y^2} = 100\)
Advertisements (Quảng cáo)
S đạt giá trị lớn nhất khi và chỉ khi \({x^2}{y^2} = {x^2}(100 - {x^2})\) đạt giá trị lớn nhất.
Bài toán quy về: Tìm \(x \in \left( {0;10} \right)\) sao cho tại đó hàm số \(z = {x^2}(100 - {x^2}),x \in \left( {0;10} \right)\) đạt giá trị lớn nhất.
Ta tìm được \(x = y = 5\sqrt 2 \)
Trong các tam giác vuông đó, tam giác vuông cân có diện tích lớn nhất. Độ dài hai cạnh góc vuông của tam giác đó là \(x = y = 5\sqrt 2 \) (cm)