a) \(3{\log _x}4 + 2{\log _{4x}}4 + 3{\log _{16x}}4 \le 0\)
b) \({\log _4}{\log _3}{{x - 1} \over {x + 1}} < {\log _{{1 \over 4}}}{\log _{{1 \over 3}}}{{x + 1} \over {x - 1}}\)
Giải
a) Đưa về cùng lôgarit cơ số 4.
\(3{\log _x}4 + 2{\log _{4x}}4 + 3{\log _{16x}}4 \le 0\)
\( \Leftrightarrow {3 \over {{{\log }_4}x}} + {2 \over {{{\log }_4}x + 1}} + {3 \over {{{\log }_4}x + 2}} \le 0\) .
Advertisements (Quảng cáo)
Đặt \({\log _4}x = t\) , ta có \({3 \over t} + {2 \over {t + 1}} + {3 \over {t + 2}} \le 0\) .
Từ đó ta có kết luận: \(0 < x < {1 \over 6}\) hoặc \({1 \over 8} \le x < {1 \over 4}\) hoặc\({1 \over 2} \le x < 1\).
b)
Trước hết đưa về cùng lôgarit cơ số 4 , sau đó đưa cùng lôgarit cơ số 3 , rồi đặt \(t = {\log _3}{{x - 1} \over {x + 1}}\) , ta có bất phương trình \({{{t^2} - 1} \over t} < 0\) .
Giải t ta tìm được x < -2 hoặc 1 < x < 2.